category_theory.glue_dataMathlib.CategoryTheory.GlueData

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -82,9 +82,9 @@ theorem t'_iij (i j : D.J) : D.t' i i j = (pullbackSymmetry _ _).Hom :=
   by
   have eq₁ := D.t_fac i i j
   have eq₂ := (is_iso.eq_comp_inv (D.f i i)).mpr (@pullback.condition _ _ _ _ _ _ (D.f i j) _)
-  rw [D.t_id, category.comp_id, eq₂] at eq₁ 
+  rw [D.t_id, category.comp_id, eq₂] at eq₁
   have eq₃ := (is_iso.eq_comp_inv (D.f i i)).mp eq₁
-  rw [category.assoc, ← pullback.condition, ← category.assoc] at eq₃ 
+  rw [category.assoc, ← pullback.condition, ← category.assoc] at eq₃
   exact
     mono.right_cancellation _ _
       ((mono.right_cancellation _ _ eq₃).trans (pullback_symmetry_hom_comp_fst _ _).symm)
@@ -109,9 +109,9 @@ theorem t_inv (i j : D.J) : D.t i j ≫ D.t j i = 𝟙 _ :=
   by
   have eq : (pullback_symmetry (D.f i i) (D.f i j)).Hom = pullback.snd ≫ inv pullback.fst := by simp
   have := D.cocycle i j i
-  rw [D.t'_iij, D.t'_jii, D.t'_iji, fst_eq_snd_of_mono_eq, Eq] at this 
-  simp only [category.assoc, is_iso.inv_hom_id_assoc] at this 
-  rw [← is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq] at this 
+  rw [D.t'_iij, D.t'_jii, D.t'_iji, fst_eq_snd_of_mono_eq, Eq] at this
+  simp only [category.assoc, is_iso.inv_hom_id_assoc] at this
+  rw [← is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq] at this
   simpa using this
 #align category_theory.glue_data.t_inv CategoryTheory.GlueData.t_inv
 -/
@@ -467,8 +467,8 @@ theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.mul
   let e := D.glued_iso F
   obtain ⟨i, y, eq⟩ := (D.map_glue_data F).types_ι_jointly_surjective (e.hom x)
   replace eq := congr_arg e.inv Eq
-  change ((D.map_glue_data F).ι i ≫ e.inv) y = (e.hom ≫ e.inv) x at eq 
-  rw [e.hom_inv_id, D.ι_glued_iso_inv] at eq 
+  change ((D.map_glue_data F).ι i ≫ e.inv) y = (e.hom ≫ e.inv) x at eq
+  rw [e.hom_inv_id, D.ι_glued_iso_inv] at eq
   exact ⟨i, y, Eq⟩
 #align category_theory.glue_data.ι_jointly_surjective CategoryTheory.GlueData.ι_jointly_surjective
 -/
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2021 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
 -/
-import Mathbin.Tactic.Elementwise
-import Mathbin.CategoryTheory.Limits.Shapes.Multiequalizer
-import Mathbin.CategoryTheory.Limits.Constructions.EpiMono
-import Mathbin.CategoryTheory.Limits.Preserves.Limits
-import Mathbin.CategoryTheory.Limits.Shapes.Types
+import Tactic.Elementwise
+import CategoryTheory.Limits.Shapes.Multiequalizer
+import CategoryTheory.Limits.Constructions.EpiMono
+import CategoryTheory.Limits.Preserves.Limits
+import CategoryTheory.Limits.Shapes.Types
 
 #align_import category_theory.glue_data from "leanprover-community/mathlib"@"31ca6f9cf5f90a6206092cd7f84b359dcb6d52e0"
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
-
-! This file was ported from Lean 3 source module category_theory.glue_data
-! leanprover-community/mathlib commit 31ca6f9cf5f90a6206092cd7f84b359dcb6d52e0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Tactic.Elementwise
 import Mathbin.CategoryTheory.Limits.Shapes.Multiequalizer
@@ -14,6 +9,8 @@ import Mathbin.CategoryTheory.Limits.Constructions.EpiMono
 import Mathbin.CategoryTheory.Limits.Preserves.Limits
 import Mathbin.CategoryTheory.Limits.Shapes.Types
 
+#align_import category_theory.glue_data from "leanprover-community/mathlib"@"31ca6f9cf5f90a6206092cd7f84b359dcb6d52e0"
+
 /-!
 # Gluing data
 
Diff
@@ -304,8 +304,6 @@ theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
 
 variable (F : C ⥤ C') [H : ∀ i j k, PreservesLimit (cospan (D.f i j) (D.f i k)) F]
 
-include H
-
 instance (i j k : D.J) : HasPullback (F.map (D.f i j)) (F.map (D.f i k)) :=
   ⟨⟨⟨_, isLimitOfHasPullbackOfPreservesLimit F (D.f i j) (D.f i k)⟩⟩⟩
 
@@ -350,54 +348,62 @@ def diagramIso : D.diagram.multispan ⋙ F ≅ (D.mapGlueData F).diagram.multisp
 #align category_theory.glue_data.diagram_iso CategoryTheory.GlueData.diagramIso
 -/
 
+#print CategoryTheory.GlueData.diagramIso_app_left /-
 @[simp]
 theorem diagramIso_app_left (i : D.J × D.J) :
     (D.diagramIso F).app (WalkingMultispan.left i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_left
+-/
 
+#print CategoryTheory.GlueData.diagramIso_app_right /-
 @[simp]
 theorem diagramIso_app_right (i : D.J) :
     (D.diagramIso F).app (WalkingMultispan.right i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_right
+-/
 
+#print CategoryTheory.GlueData.diagramIso_hom_app_left /-
 @[simp]
 theorem diagramIso_hom_app_left (i : D.J × D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_left
+-/
 
+#print CategoryTheory.GlueData.diagramIso_hom_app_right /-
 @[simp]
 theorem diagramIso_hom_app_right (i : D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.right i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_right
+-/
 
+#print CategoryTheory.GlueData.diagramIso_inv_app_left /-
 @[simp]
 theorem diagramIso_inv_app_left (i : D.J × D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_left
+-/
 
+#print CategoryTheory.GlueData.diagramIso_inv_app_right /-
 @[simp]
 theorem diagramIso_inv_app_right (i : D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.right i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_inv_app_right CategoryTheory.GlueData.diagramIso_inv_app_right
+-/
 
 variable [HasMulticoequalizer D.diagram] [PreservesColimit D.diagram.multispan F]
 
-omit H
-
 #print CategoryTheory.GlueData.hasColimit_multispan_comp /-
 theorem hasColimit_multispan_comp : HasColimit (D.diagram.multispan ⋙ F) :=
   ⟨⟨⟨_, PreservesColimit.preserves (colimit.isColimit _)⟩⟩⟩
 #align category_theory.glue_data.has_colimit_multispan_comp CategoryTheory.GlueData.hasColimit_multispan_comp
 -/
 
-include H
-
 attribute [local instance] has_colimit_multispan_comp
 
 #print CategoryTheory.GlueData.hasColimit_mapGlueData_diagram /-
@@ -408,22 +414,28 @@ theorem hasColimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).d
 
 attribute [local instance] has_colimit_map_glue_data_diagram
 
+#print CategoryTheory.GlueData.gluedIso /-
 /-- If `F` preserves the gluing, we obtain an iso between the glued objects. -/
 def gluedIso : F.obj D.glued ≅ (D.mapGlueData F).glued :=
   preservesColimitIso F D.diagram.multispan ≪≫ Limits.HasColimit.isoOfNatIso (D.diagramIso F)
 #align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIso
+-/
 
+#print CategoryTheory.GlueData.ι_gluedIso_hom /-
 @[simp, reassoc]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
   by
   erw [ι_preserves_colimits_iso_hom_assoc]; rw [has_colimit.iso_of_nat_iso_ι_hom]
   erw [category.id_comp]; rfl
 #align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_hom
+-/
 
+#print CategoryTheory.GlueData.ι_gluedIso_inv /-
 @[simp, reassoc]
 theorem ι_gluedIso_inv (i : D.J) : (D.mapGlueData F).ι i ≫ (D.gluedIso F).inv = F.map (D.ι i) := by
   rw [iso.comp_inv_eq, ι_glued_iso_hom]
 #align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_inv
+-/
 
 #print CategoryTheory.GlueData.vPullbackConeIsLimitOfMap /-
 /-- If `F` preserves the gluing, and reflects the pullback of `U i ⟶ glued` and `U j ⟶ glued`,
@@ -448,8 +460,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
 -/
 
-omit H
-
+#print CategoryTheory.GlueData.ι_jointly_surjective /-
 /-- If there is a forgetful functor into `Type` that preserves enough (co)limits, then `D.ι` will
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
@@ -463,6 +474,7 @@ theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.mul
   rw [e.hom_inv_id, D.ι_glued_iso_inv] at eq 
   exact ⟨i, y, Eq⟩
 #align category_theory.glue_data.ι_jointly_surjective CategoryTheory.GlueData.ι_jointly_surjective
+-/
 
 end GlueData
 
Diff
@@ -85,9 +85,9 @@ theorem t'_iij (i j : D.J) : D.t' i i j = (pullbackSymmetry _ _).Hom :=
   by
   have eq₁ := D.t_fac i i j
   have eq₂ := (is_iso.eq_comp_inv (D.f i i)).mpr (@pullback.condition _ _ _ _ _ _ (D.f i j) _)
-  rw [D.t_id, category.comp_id, eq₂] at eq₁
+  rw [D.t_id, category.comp_id, eq₂] at eq₁ 
   have eq₃ := (is_iso.eq_comp_inv (D.f i i)).mp eq₁
-  rw [category.assoc, ← pullback.condition, ← category.assoc] at eq₃
+  rw [category.assoc, ← pullback.condition, ← category.assoc] at eq₃ 
   exact
     mono.right_cancellation _ _
       ((mono.right_cancellation _ _ eq₃).trans (pullback_symmetry_hom_comp_fst _ _).symm)
@@ -112,9 +112,9 @@ theorem t_inv (i j : D.J) : D.t i j ≫ D.t j i = 𝟙 _ :=
   by
   have eq : (pullback_symmetry (D.f i i) (D.f i j)).Hom = pullback.snd ≫ inv pullback.fst := by simp
   have := D.cocycle i j i
-  rw [D.t'_iij, D.t'_jii, D.t'_iji, fst_eq_snd_of_mono_eq, Eq] at this
-  simp only [category.assoc, is_iso.inv_hom_id_assoc] at this
-  rw [← is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq] at this
+  rw [D.t'_iij, D.t'_jii, D.t'_iji, fst_eq_snd_of_mono_eq, Eq] at this 
+  simp only [category.assoc, is_iso.inv_hom_id_assoc] at this 
+  rw [← is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq] at this 
   simpa using this
 #align category_theory.glue_data.t_inv CategoryTheory.GlueData.t_inv
 -/
@@ -287,7 +287,7 @@ theorem types_π_surjective (D : GlueData (Type _)) : Function.Surjective D.π :
 
 #print CategoryTheory.GlueData.types_ι_jointly_surjective /-
 theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
-    ∃ (i : _)(y : D.U i), D.ι i y = x :=
+    ∃ (i : _) (y : D.U i), D.ι i y = x :=
   by
   delta CategoryTheory.GlueData.ι
   simp_rw [← multicoequalizer.ι_sigma_π D.diagram]
@@ -298,7 +298,7 @@ theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
       concrete_category.congr_hom
         (colimit.iso_colimit_cocone (types.coproduct_colimit_cocone _)).hom_inv_id x']
   rcases(colimit.iso_colimit_cocone (types.coproduct_colimit_cocone _)).Hom x' with ⟨i, y⟩
-  exact ⟨i, y, by simpa [← multicoequalizer.ι_sigma_π, -multicoequalizer.ι_sigma_π] ⟩
+  exact ⟨i, y, by simpa [← multicoequalizer.ι_sigma_π, -multicoequalizer.ι_sigma_π]⟩
 #align category_theory.glue_data.types_ι_jointly_surjective CategoryTheory.GlueData.types_ι_jointly_surjective
 -/
 
@@ -437,7 +437,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
     cospan (F.map (D.ι i)) (F.map (D.ι j)) ≅
       cospan ((D.map_glue_data F).ι i) ((D.map_glue_data F).ι j)
   exact
-    nat_iso.of_components (fun x => by cases x; exacts[D.glued_iso F, iso.refl _])
+    nat_iso.of_components (fun x => by cases x; exacts [D.glued_iso F, iso.refl _])
       (by rintro (_ | _) (_ | _) (_ | _ | _) <;> simp)
   apply is_limit.postcompose_hom_equiv e _ _
   apply hc.of_iso_limit
@@ -454,13 +454,13 @@ omit H
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
     [∀ i j k : D.J, PreservesLimit (cospan (D.f i j) (D.f i k)) F] (x : F.obj D.glued) :
-    ∃ (i : _)(y : F.obj (D.U i)), F.map (D.ι i) y = x :=
+    ∃ (i : _) (y : F.obj (D.U i)), F.map (D.ι i) y = x :=
   by
   let e := D.glued_iso F
   obtain ⟨i, y, eq⟩ := (D.map_glue_data F).types_ι_jointly_surjective (e.hom x)
   replace eq := congr_arg e.inv Eq
-  change ((D.map_glue_data F).ι i ≫ e.inv) y = (e.hom ≫ e.inv) x at eq
-  rw [e.hom_inv_id, D.ι_glued_iso_inv] at eq
+  change ((D.map_glue_data F).ι i ≫ e.inv) y = (e.hom ≫ e.inv) x at eq 
+  rw [e.hom_inv_id, D.ι_glued_iso_inv] at eq 
   exact ⟨i, y, Eq⟩
 #align category_theory.glue_data.ι_jointly_surjective CategoryTheory.GlueData.ι_jointly_surjective
 
Diff
@@ -350,54 +350,36 @@ def diagramIso : D.diagram.multispan ⋙ F ≅ (D.mapGlueData F).diagram.multisp
 #align category_theory.glue_data.diagram_iso CategoryTheory.GlueData.diagramIso
 -/
 
-/- warning: category_theory.glue_data.diagram_iso_app_left -> CategoryTheory.GlueData.diagramIso_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_app_left (i : D.J × D.J) :
     (D.diagramIso F).app (WalkingMultispan.left i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_left
 
-/- warning: category_theory.glue_data.diagram_iso_app_right -> CategoryTheory.GlueData.diagramIso_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_app_right (i : D.J) :
     (D.diagramIso F).app (WalkingMultispan.right i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_right
 
-/- warning: category_theory.glue_data.diagram_iso_hom_app_left -> CategoryTheory.GlueData.diagramIso_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_left (i : D.J × D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_left
 
-/- warning: category_theory.glue_data.diagram_iso_hom_app_right -> CategoryTheory.GlueData.diagramIso_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_right (i : D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.right i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_right
 
-/- warning: category_theory.glue_data.diagram_iso_inv_app_left -> CategoryTheory.GlueData.diagramIso_inv_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_left (i : D.J × D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_left
 
-/- warning: category_theory.glue_data.diagram_iso_inv_app_right -> CategoryTheory.GlueData.diagramIso_inv_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_right CategoryTheory.GlueData.diagramIso_inv_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_right (i : D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.right i) = 𝟙 _ :=
@@ -426,20 +408,11 @@ theorem hasColimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).d
 
 attribute [local instance] has_colimit_map_glue_data_diagram
 
-/- warning: category_theory.glue_data.glued_iso -> CategoryTheory.GlueData.gluedIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F], CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F H _inst_3 _inst_4))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F], CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIsoₓ'. -/
 /-- If `F` preserves the gluing, we obtain an iso between the glued objects. -/
 def gluedIso : F.obj D.glued ≅ (D.mapGlueData F).glued :=
   preservesColimitIso F D.diagram.multispan ≪≫ Limits.HasColimit.isoOfNatIso (D.diagramIso F)
 #align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIso
 
-/- warning: category_theory.glue_data.ι_glued_iso_hom -> CategoryTheory.GlueData.ι_gluedIso_hom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_homₓ'. -/
 @[simp, reassoc]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
   by
@@ -447,9 +420,6 @@ theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.m
   erw [category.id_comp]; rfl
 #align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_hom
 
-/- warning: category_theory.glue_data.ι_glued_iso_inv -> CategoryTheory.GlueData.ι_gluedIso_inv is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_invₓ'. -/
 @[simp, reassoc]
 theorem ι_gluedIso_inv (i : D.J) : (D.mapGlueData F).ι i ≫ (D.gluedIso F).inv = F.map (D.ι i) := by
   rw [iso.comp_inv_eq, ι_glued_iso_hom]
@@ -480,12 +450,6 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
 
 omit H
 
-/- warning: category_theory.glue_data.ι_jointly_surjective -> CategoryTheory.GlueData.ι_jointly_surjective is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] (F : CategoryTheory.Functor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}) [_inst_5 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] [_inst_6 : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (x : CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)), Exists.{succ u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => Exists.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (fun (y : CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) => Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.Functor.map.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i) y) x))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] (F : CategoryTheory.Functor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}) [_inst_5 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] [_inst_6 : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (x : Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)), Exists.{succ u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => Exists.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (fun (y : Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) => Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (Prefunctor.map.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i) y) x))
-Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_jointly_surjective CategoryTheory.GlueData.ι_jointly_surjectiveₓ'. -/
 /-- If there is a forgetful functor into `Type` that preserves enough (co)limits, then `D.ι` will
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
Diff
@@ -95,18 +95,14 @@ theorem t'_iij (i j : D.J) : D.t' i i j = (pullbackSymmetry _ _).Hom :=
 -/
 
 #print CategoryTheory.GlueData.t'_jii /-
-theorem t'_jii (i j : D.J) : D.t' j i i = pullback.fst ≫ D.t j i ≫ inv pullback.snd :=
-  by
-  rw [← category.assoc, ← D.t_fac]
-  simp
+theorem t'_jii (i j : D.J) : D.t' j i i = pullback.fst ≫ D.t j i ≫ inv pullback.snd := by
+  rw [← category.assoc, ← D.t_fac]; simp
 #align category_theory.glue_data.t'_jii CategoryTheory.GlueData.t'_jii
 -/
 
 #print CategoryTheory.GlueData.t'_iji /-
-theorem t'_iji (i j : D.J) : D.t' i j i = pullback.fst ≫ D.t i j ≫ inv pullback.snd :=
-  by
-  rw [← category.assoc, ← D.t_fac]
-  simp
+theorem t'_iji (i j : D.J) : D.t' i j i = pullback.fst ≫ D.t i j ≫ inv pullback.snd := by
+  rw [← category.assoc, ← D.t_fac]; simp
 #align category_theory.glue_data.t'_iji CategoryTheory.GlueData.t'_iji
 -/
 
@@ -277,9 +273,7 @@ def π : D.sigmaOpens ⟶ D.glued :=
 -/
 
 #print CategoryTheory.GlueData.π_epi /-
-instance π_epi : Epi D.π := by
-  unfold π
-  infer_instance
+instance π_epi : Epi D.π := by unfold π; infer_instance
 #align category_theory.glue_data.π_epi CategoryTheory.GlueData.π_epi
 -/
 
@@ -326,9 +320,7 @@ def mapGlueData : GlueData C' where
   f_mono i j := preserves_mono_of_preservesLimit _ _
   f_id i := inferInstance
   t i j := F.map (D.t i j)
-  t_id i := by
-    rw [D.t_id i]
-    simp
+  t_id i := by rw [D.t_id i]; simp
   t' i j k :=
     (PreservesPullback.iso F (D.f i j) (D.f i k)).inv ≫
       F.map (D.t' i j k) ≫ (PreservesPullback.iso F (D.f j k) (D.f j i)).Hom
@@ -351,14 +343,10 @@ def diagramIso : D.diagram.multispan ⋙ F ≅ (D.mapGlueData F).diagram.multisp
       | walking_multispan.right b => Iso.refl _)
     (by
       rintro (⟨_, _⟩ | _) _ (_ | _ | _)
-      · erw [category.comp_id, category.id_comp, Functor.map_id]
-        rfl
-      · erw [category.comp_id, category.id_comp]
-        rfl
-      · erw [category.comp_id, category.id_comp, functor.map_comp]
-        rfl
-      · erw [category.comp_id, category.id_comp, Functor.map_id]
-        rfl)
+      · erw [category.comp_id, category.id_comp, Functor.map_id]; rfl
+      · erw [category.comp_id, category.id_comp]; rfl
+      · erw [category.comp_id, category.id_comp, functor.map_comp]; rfl
+      · erw [category.comp_id, category.id_comp, Functor.map_id]; rfl)
 #align category_theory.glue_data.diagram_iso CategoryTheory.GlueData.diagramIso
 -/
 
@@ -455,10 +443,8 @@ Case conversion may be inaccurate. Consider using '#align category_theory.glue_d
 @[simp, reassoc]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
   by
-  erw [ι_preserves_colimits_iso_hom_assoc]
-  rw [has_colimit.iso_of_nat_iso_ι_hom]
-  erw [category.id_comp]
-  rfl
+  erw [ι_preserves_colimits_iso_hom_assoc]; rw [has_colimit.iso_of_nat_iso_ι_hom]
+  erw [category.id_comp]; rfl
 #align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_hom
 
 /- warning: category_theory.glue_data.ι_glued_iso_inv -> CategoryTheory.GlueData.ι_gluedIso_inv is a dubious translation:
@@ -481,10 +467,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
     cospan (F.map (D.ι i)) (F.map (D.ι j)) ≅
       cospan ((D.map_glue_data F).ι i) ((D.map_glue_data F).ι j)
   exact
-    nat_iso.of_components
-      (fun x => by
-        cases x
-        exacts[D.glued_iso F, iso.refl _])
+    nat_iso.of_components (fun x => by cases x; exacts[D.glued_iso F, iso.refl _])
       (by rintro (_ | _) (_ | _) (_ | _ | _) <;> simp)
   apply is_limit.postcompose_hom_equiv e _ _
   apply hc.of_iso_limit
Diff
@@ -363,10 +363,7 @@ def diagramIso : D.diagram.multispan ⋙ F ≅ (D.mapGlueData F).diagram.multisp
 -/
 
 /- warning: category_theory.glue_data.diagram_iso_app_left -> CategoryTheory.GlueData.diagramIso_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_app_left (i : D.J × D.J) :
@@ -375,10 +372,7 @@ theorem diagramIso_app_left (i : D.J × D.J) :
 #align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_left
 
 /- warning: category_theory.glue_data.diagram_iso_app_right -> CategoryTheory.GlueData.diagramIso_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_app_right (i : D.J) :
@@ -387,10 +381,7 @@ theorem diagramIso_app_right (i : D.J) :
 #align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_right
 
 /- warning: category_theory.glue_data.diagram_iso_hom_app_left -> CategoryTheory.GlueData.diagramIso_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_left (i : D.J × D.J) :
@@ -399,10 +390,7 @@ theorem diagramIso_hom_app_left (i : D.J × D.J) :
 #align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_left
 
 /- warning: category_theory.glue_data.diagram_iso_hom_app_right -> CategoryTheory.GlueData.diagramIso_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_right (i : D.J) :
@@ -411,10 +399,7 @@ theorem diagramIso_hom_app_right (i : D.J) :
 #align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_right
 
 /- warning: category_theory.glue_data.diagram_iso_inv_app_left -> CategoryTheory.GlueData.diagramIso_inv_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_left (i : D.J × D.J) :
@@ -423,10 +408,7 @@ theorem diagramIso_inv_app_left (i : D.J × D.J) :
 #align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_left
 
 /- warning: category_theory.glue_data.diagram_iso_inv_app_right -> CategoryTheory.GlueData.diagramIso_inv_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_right CategoryTheory.GlueData.diagramIso_inv_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_right (i : D.J) :
@@ -468,10 +450,7 @@ def gluedIso : F.obj D.glued ≅ (D.mapGlueData F).glued :=
 #align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIso
 
 /- warning: category_theory.glue_data.ι_glued_iso_hom -> CategoryTheory.GlueData.ι_gluedIso_hom is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i)) (CategoryTheory.Iso.hom.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i)) (CategoryTheory.Iso.hom.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_homₓ'. -/
 @[simp, reassoc]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
@@ -483,10 +462,7 @@ theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.m
 #align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_hom
 
 /- warning: category_theory.glue_data.ι_glued_iso_inv -> CategoryTheory.GlueData.ι_gluedIso_inv is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.GlueData.u.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.GlueData.u.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i) (CategoryTheory.Iso.inv.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.Functor.map.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i) (CategoryTheory.Iso.inv.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_invₓ'. -/
 @[simp, reassoc]
 theorem ι_gluedIso_inv (i : D.J) : (D.mapGlueData F).ι i ≫ (D.gluedIso F).inv = F.map (D.ι i) := by
Diff
@@ -73,7 +73,7 @@ attribute [simp] glue_data.t_id
 
 attribute [instance] glue_data.f_id glue_data.f_mono glue_data.f_has_pullback
 
-attribute [reassoc.1] glue_data.t_fac glue_data.cocycle
+attribute [reassoc] glue_data.t_fac glue_data.cocycle
 
 namespace GlueData
 
@@ -111,7 +111,7 @@ theorem t'_iji (i j : D.J) : D.t' i j i = pullback.fst ≫ D.t i j ≫ inv pullb
 -/
 
 #print CategoryTheory.GlueData.t_inv /-
-@[simp, reassoc.1, elementwise]
+@[simp, reassoc, elementwise]
 theorem t_inv (i j : D.J) : D.t i j ≫ D.t j i = 𝟙 _ :=
   by
   have eq : (pullback_symmetry (D.f i i) (D.f i j)).Hom = pullback.snd ≫ inv pullback.fst := by simp
@@ -145,7 +145,7 @@ instance t'_isIso (i j k : D.J) : IsIso (D.t' i j k) :=
 -/
 
 #print CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry /-
-@[reassoc.1]
+@[reassoc]
 theorem t'_comp_eq_pullbackSymmetry (i j k : D.J) :
     D.t' j k i ≫ D.t' k i j =
       (pullbackSymmetry _ _).Hom ≫ D.t' j i k ≫ (pullbackSymmetry _ _).Hom :=
@@ -473,7 +473,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i)) (CategoryTheory.Iso.hom.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i)
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_homₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
   by
   erw [ι_preserves_colimits_iso_hom_assoc]
@@ -488,7 +488,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i) (CategoryTheory.Iso.inv.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i))
 Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_invₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem ι_gluedIso_inv (i : D.J) : (D.mapGlueData F).ι i ≫ (D.gluedIso F).inv = F.map (D.ι i) := by
   rw [iso.comp_inv_eq, ι_glued_iso_hom]
 #align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_inv
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
 
 ! This file was ported from Lean 3 source module category_theory.glue_data
-! leanprover-community/mathlib commit 14b69e9f3c16630440a2cbd46f1ddad0d561dee7
+! leanprover-community/mathlib commit 31ca6f9cf5f90a6206092cd7f84b359dcb6d52e0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -17,6 +17,9 @@ import Mathbin.CategoryTheory.Limits.Shapes.Types
 /-!
 # Gluing data
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We define `glue_data` as a family of data needed to glue topological spaces, schemes, etc. We
 provide the API to realize it as a multispan diagram, and also states lemmas about its
 interaction with a functor that preserves certain pullbacks.
Diff
@@ -34,6 +34,7 @@ universe v u₁ u₂
 
 variable (C : Type u₁) [Category.{v} C] {C' : Type u₂} [Category.{v} C']
 
+#print CategoryTheory.GlueData /-
 /-- A gluing datum consists of
 1. An index type `J`
 2. An object `U i` for each `i : J`.
@@ -63,6 +64,7 @@ structure GlueData where
   t_fac : ∀ i j k, t' i j k ≫ pullback.snd = pullback.fst ≫ t i j
   cocycle : ∀ i j k, t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _
 #align category_theory.glue_data CategoryTheory.GlueData
+-/
 
 attribute [simp] glue_data.t_id
 
@@ -74,6 +76,7 @@ namespace GlueData
 
 variable {C} (D : GlueData C)
 
+#print CategoryTheory.GlueData.t'_iij /-
 @[simp]
 theorem t'_iij (i j : D.J) : D.t' i i j = (pullbackSymmetry _ _).Hom :=
   by
@@ -86,19 +89,25 @@ theorem t'_iij (i j : D.J) : D.t' i i j = (pullbackSymmetry _ _).Hom :=
     mono.right_cancellation _ _
       ((mono.right_cancellation _ _ eq₃).trans (pullback_symmetry_hom_comp_fst _ _).symm)
 #align category_theory.glue_data.t'_iij CategoryTheory.GlueData.t'_iij
+-/
 
+#print CategoryTheory.GlueData.t'_jii /-
 theorem t'_jii (i j : D.J) : D.t' j i i = pullback.fst ≫ D.t j i ≫ inv pullback.snd :=
   by
   rw [← category.assoc, ← D.t_fac]
   simp
 #align category_theory.glue_data.t'_jii CategoryTheory.GlueData.t'_jii
+-/
 
+#print CategoryTheory.GlueData.t'_iji /-
 theorem t'_iji (i j : D.J) : D.t' i j i = pullback.fst ≫ D.t i j ≫ inv pullback.snd :=
   by
   rw [← category.assoc, ← D.t_fac]
   simp
 #align category_theory.glue_data.t'_iji CategoryTheory.GlueData.t'_iji
+-/
 
+#print CategoryTheory.GlueData.t_inv /-
 @[simp, reassoc.1, elementwise]
 theorem t_inv (i j : D.J) : D.t i j ≫ D.t j i = 𝟙 _ :=
   by
@@ -109,22 +118,30 @@ theorem t_inv (i j : D.J) : D.t i j ≫ D.t j i = 𝟙 _ :=
   rw [← is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq] at this
   simpa using this
 #align category_theory.glue_data.t_inv CategoryTheory.GlueData.t_inv
+-/
 
+#print CategoryTheory.GlueData.t'_inv /-
 theorem t'_inv (i j k : D.J) :
     D.t' i j k ≫ (pullbackSymmetry _ _).Hom ≫ D.t' j i k ≫ (pullbackSymmetry _ _).Hom = 𝟙 _ :=
   by
   rw [← cancel_mono (pullback.fst : pullback (D.f i j) (D.f i k) ⟶ _)]
   simp [t_fac, t_fac_assoc]
 #align category_theory.glue_data.t'_inv CategoryTheory.GlueData.t'_inv
+-/
 
+#print CategoryTheory.GlueData.t_isIso /-
 instance t_isIso (i j : D.J) : IsIso (D.t i j) :=
   ⟨⟨D.t j i, D.t_inv _ _, D.t_inv _ _⟩⟩
 #align category_theory.glue_data.t_is_iso CategoryTheory.GlueData.t_isIso
+-/
 
+#print CategoryTheory.GlueData.t'_isIso /-
 instance t'_isIso (i j k : D.J) : IsIso (D.t' i j k) :=
   ⟨⟨D.t' j k i ≫ D.t' k i j, D.cocycle _ _ _, by simpa using D.cocycle _ _ _⟩⟩
 #align category_theory.glue_data.t'_is_iso CategoryTheory.GlueData.t'_isIso
+-/
 
+#print CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry /-
 @[reassoc.1]
 theorem t'_comp_eq_pullbackSymmetry (i j k : D.J) :
     D.t' j k i ≫ D.t' k i j =
@@ -135,12 +152,16 @@ theorem t'_comp_eq_pullbackSymmetry (i j k : D.J) :
   · rw [← cancel_mono (pullback.fst : pullback (D.f i j) (D.f i k) ⟶ _)]
     simp [t_fac, t_fac_assoc]
 #align category_theory.glue_data.t'_comp_eq_pullback_symmetry CategoryTheory.GlueData.t'_comp_eq_pullbackSymmetry
+-/
 
+#print CategoryTheory.GlueData.sigmaOpens /-
 /-- (Implementation) The disjoint union of `U i`. -/
 def sigmaOpens [HasCoproduct D.U] : C :=
   ∐ D.U
 #align category_theory.glue_data.sigma_opens CategoryTheory.GlueData.sigmaOpens
+-/
 
+#print CategoryTheory.GlueData.diagram /-
 /-- (Implementation) The diagram to take colimit of. -/
 def diagram : MultispanIndex C where
   L := D.J × D.J
@@ -152,90 +173,122 @@ def diagram : MultispanIndex C where
   fst := fun ⟨i, j⟩ => D.f i j
   snd := fun ⟨i, j⟩ => D.t i j ≫ D.f j i
 #align category_theory.glue_data.diagram CategoryTheory.GlueData.diagram
+-/
 
+#print CategoryTheory.GlueData.diagram_l /-
 @[simp]
 theorem diagram_l : D.diagram.L = (D.J × D.J) :=
   rfl
 #align category_theory.glue_data.diagram_L CategoryTheory.GlueData.diagram_l
+-/
 
+#print CategoryTheory.GlueData.diagram_r /-
 @[simp]
 theorem diagram_r : D.diagram.R = D.J :=
   rfl
 #align category_theory.glue_data.diagram_R CategoryTheory.GlueData.diagram_r
+-/
 
+#print CategoryTheory.GlueData.diagram_fstFrom /-
 @[simp]
 theorem diagram_fstFrom (i j : D.J) : D.diagram.fstFrom ⟨i, j⟩ = i :=
   rfl
 #align category_theory.glue_data.diagram_fst_from CategoryTheory.GlueData.diagram_fstFrom
+-/
 
+#print CategoryTheory.GlueData.diagram_sndFrom /-
 @[simp]
 theorem diagram_sndFrom (i j : D.J) : D.diagram.sndFrom ⟨i, j⟩ = j :=
   rfl
 #align category_theory.glue_data.diagram_snd_from CategoryTheory.GlueData.diagram_sndFrom
+-/
 
+#print CategoryTheory.GlueData.diagram_fst /-
 @[simp]
 theorem diagram_fst (i j : D.J) : D.diagram.fst ⟨i, j⟩ = D.f i j :=
   rfl
 #align category_theory.glue_data.diagram_fst CategoryTheory.GlueData.diagram_fst
+-/
 
+#print CategoryTheory.GlueData.diagram_snd /-
 @[simp]
 theorem diagram_snd (i j : D.J) : D.diagram.snd ⟨i, j⟩ = D.t i j ≫ D.f j i :=
   rfl
 #align category_theory.glue_data.diagram_snd CategoryTheory.GlueData.diagram_snd
+-/
 
+#print CategoryTheory.GlueData.diagram_left /-
 @[simp]
 theorem diagram_left : D.diagram.left = D.V :=
   rfl
 #align category_theory.glue_data.diagram_left CategoryTheory.GlueData.diagram_left
+-/
 
+#print CategoryTheory.GlueData.diagram_right /-
 @[simp]
 theorem diagram_right : D.diagram.right = D.U :=
   rfl
 #align category_theory.glue_data.diagram_right CategoryTheory.GlueData.diagram_right
+-/
 
 section
 
 variable [HasMulticoequalizer D.diagram]
 
+#print CategoryTheory.GlueData.glued /-
 /-- The glued object given a family of gluing data. -/
 def glued : C :=
   multicoequalizer D.diagram
 #align category_theory.glue_data.glued CategoryTheory.GlueData.glued
+-/
 
+#print CategoryTheory.GlueData.ι /-
 /-- The map `D.U i ⟶ D.glued` for each `i`. -/
 def ι (i : D.J) : D.U i ⟶ D.glued :=
   Multicoequalizer.π D.diagram i
 #align category_theory.glue_data.ι CategoryTheory.GlueData.ι
+-/
 
+#print CategoryTheory.GlueData.glue_condition /-
 @[simp, elementwise]
 theorem glue_condition (i j : D.J) : D.t i j ≫ D.f j i ≫ D.ι j = D.f i j ≫ D.ι i :=
   (Category.assoc _ _ _).symm.trans (Multicoequalizer.condition D.diagram ⟨i, j⟩).symm
 #align category_theory.glue_data.glue_condition CategoryTheory.GlueData.glue_condition
+-/
 
+#print CategoryTheory.GlueData.vPullbackCone /-
 /-- The pullback cone spanned by `V i j ⟶ U i` and `V i j ⟶ U j`.
 This will often be a pullback diagram. -/
 def vPullbackCone (i j : D.J) : PullbackCone (D.ι i) (D.ι j) :=
   PullbackCone.mk (D.f i j) (D.t i j ≫ D.f j i) (by simp)
 #align category_theory.glue_data.V_pullback_cone CategoryTheory.GlueData.vPullbackCone
+-/
 
 variable [HasColimits C]
 
+#print CategoryTheory.GlueData.π /-
 /-- The projection `∐ D.U ⟶ D.glued` given by the colimit. -/
 def π : D.sigmaOpens ⟶ D.glued :=
   Multicoequalizer.sigmaπ D.diagram
 #align category_theory.glue_data.π CategoryTheory.GlueData.π
+-/
 
+#print CategoryTheory.GlueData.π_epi /-
 instance π_epi : Epi D.π := by
   unfold π
   infer_instance
 #align category_theory.glue_data.π_epi CategoryTheory.GlueData.π_epi
+-/
 
 end
 
+#print CategoryTheory.GlueData.types_π_surjective /-
 theorem types_π_surjective (D : GlueData (Type _)) : Function.Surjective D.π :=
   (epi_iff_surjective _).mp inferInstance
 #align category_theory.glue_data.types_π_surjective CategoryTheory.GlueData.types_π_surjective
+-/
 
+#print CategoryTheory.GlueData.types_ι_jointly_surjective /-
 theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
     ∃ (i : _)(y : D.U i), D.ι i y = x :=
   by
@@ -250,6 +303,7 @@ theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
   rcases(colimit.iso_colimit_cocone (types.coproduct_colimit_cocone _)).Hom x' with ⟨i, y⟩
   exact ⟨i, y, by simpa [← multicoequalizer.ι_sigma_π, -multicoequalizer.ι_sigma_π] ⟩
 #align category_theory.glue_data.types_ι_jointly_surjective CategoryTheory.GlueData.types_ι_jointly_surjective
+-/
 
 variable (F : C ⥤ C') [H : ∀ i j k, PreservesLimit (cospan (D.f i j) (D.f i k)) F]
 
@@ -258,6 +312,7 @@ include H
 instance (i j k : D.J) : HasPullback (F.map (D.f i j)) (F.map (D.f i k)) :=
   ⟨⟨⟨_, isLimitOfHasPullbackOfPreservesLimit F (D.f i j) (D.f i k)⟩⟩⟩
 
+#print CategoryTheory.GlueData.mapGlueData /-
 /-- A functor that preserves the pullbacks of `f i j` and `f i k` can map a family of glue data. -/
 @[simps]
 def mapGlueData : GlueData C' where
@@ -279,7 +334,9 @@ def mapGlueData : GlueData C' where
     simp only [category.assoc, iso.hom_inv_id_assoc, ← functor.map_comp_assoc, D.cocycle,
       iso.inv_hom_id, CategoryTheory.Functor.map_id, category.id_comp]
 #align category_theory.glue_data.map_glue_data CategoryTheory.GlueData.mapGlueData
+-/
 
+#print CategoryTheory.GlueData.diagramIso /-
 /-- The diagram of the image of a `glue_data` under a functor `F` is naturally isomorphic to the
 original diagram of the `glue_data` via `F`.
 -/
@@ -300,37 +357,74 @@ def diagramIso : D.diagram.multispan ⋙ F ≅ (D.mapGlueData F).diagram.multisp
       · erw [category.comp_id, category.id_comp, Functor.map_id]
         rfl)
 #align category_theory.glue_data.diagram_iso CategoryTheory.GlueData.diagramIso
+-/
 
+/- warning: category_theory.glue_data.diagram_iso_app_left -> CategoryTheory.GlueData.diagramIso_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_app_left (i : D.J × D.J) :
     (D.diagramIso F).app (WalkingMultispan.left i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_left CategoryTheory.GlueData.diagramIso_app_left
 
+/- warning: category_theory.glue_data.diagram_iso_app_right -> CategoryTheory.GlueData.diagramIso_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.Iso.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Iso.refl.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_app_right (i : D.J) :
     (D.diagramIso F).app (WalkingMultispan.right i) = Iso.refl _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_app_right CategoryTheory.GlueData.diagramIso_app_right
 
+/- warning: category_theory.glue_data.diagram_iso_hom_app_left -> CategoryTheory.GlueData.diagramIso_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_left (i : D.J × D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_left CategoryTheory.GlueData.diagramIso_hom_app_left
 
+/- warning: category_theory.glue_data.diagram_iso_hom_app_right -> CategoryTheory.GlueData.diagramIso_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Iso.hom.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_hom_app_right (i : D.J) :
     (D.diagramIso F).Hom.app (WalkingMultispan.right i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_hom_app_right CategoryTheory.GlueData.diagramIso_hom_app_right
 
+/- warning: category_theory.glue_data.diagram_iso_inv_app_left -> CategoryTheory.GlueData.diagramIso_inv_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : Prod.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.left.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_leftₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_left (i : D.J × D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.left i) = 𝟙 _ :=
   rfl
 #align category_theory.glue_data.diagram_iso_inv_app_left CategoryTheory.GlueData.diagramIso_inv_app_left
 
+/- warning: category_theory.glue_data.diagram_iso_inv_app_right -> CategoryTheory.GlueData.diagramIso_inv_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u1 u3} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F)) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i))) (CategoryTheory.NatTrans.app.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Iso.inv.{u1, max u3 u1} (CategoryTheory.Functor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.category.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, u1, u2, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C _inst_1 C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)))) (CategoryTheory.GlueData.diagramIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)) (CategoryTheory.CategoryStruct.id.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Category.toCategoryStruct.{u1, u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))))) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u3} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) C' _inst_2 (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u3, u1} C' _inst_2 (CategoryTheory.GlueData.diagram.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k))))) (CategoryTheory.Limits.WalkingMultispan.right.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) i)))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.diagram_iso_inv_app_right CategoryTheory.GlueData.diagramIso_inv_app_rightₓ'. -/
 @[simp]
 theorem diagramIso_inv_app_right (i : D.J) :
     (D.diagramIso F).inv.app (WalkingMultispan.right i) = 𝟙 _ :=
@@ -341,25 +435,41 @@ variable [HasMulticoequalizer D.diagram] [PreservesColimit D.diagram.multispan F
 
 omit H
 
+#print CategoryTheory.GlueData.hasColimit_multispan_comp /-
 theorem hasColimit_multispan_comp : HasColimit (D.diagram.multispan ⋙ F) :=
   ⟨⟨⟨_, PreservesColimit.preserves (colimit.isColimit _)⟩⟩⟩
 #align category_theory.glue_data.has_colimit_multispan_comp CategoryTheory.GlueData.hasColimit_multispan_comp
+-/
 
 include H
 
 attribute [local instance] has_colimit_multispan_comp
 
-theorem has_colimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).diagram :=
+#print CategoryTheory.GlueData.hasColimit_mapGlueData_diagram /-
+theorem hasColimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).diagram :=
   hasColimitOfIso (D.diagramIso F).symm
-#align category_theory.glue_data.has_colimit_map_glue_data_diagram CategoryTheory.GlueData.has_colimit_mapGlueData_diagram
+#align category_theory.glue_data.has_colimit_map_glue_data_diagram CategoryTheory.GlueData.hasColimit_mapGlueData_diagram
+-/
 
 attribute [local instance] has_colimit_map_glue_data_diagram
 
+/- warning: category_theory.glue_data.glued_iso -> CategoryTheory.GlueData.gluedIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F], CategoryTheory.Iso.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F H _inst_3 _inst_4))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F], CategoryTheory.Iso.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIsoₓ'. -/
 /-- If `F` preserves the gluing, we obtain an iso between the glued objects. -/
 def gluedIso : F.obj D.glued ≅ (D.mapGlueData F).glued :=
   preservesColimitIso F D.diagram.multispan ≪≫ Limits.HasColimit.isoOfNatIso (D.diagramIso F)
 #align category_theory.glue_data.glued_iso CategoryTheory.GlueData.gluedIso
 
+/- warning: category_theory.glue_data.ι_glued_iso_hom -> CategoryTheory.GlueData.ι_gluedIso_hom is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i)) (CategoryTheory.Iso.hom.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i)) (CategoryTheory.Iso.hom.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i)
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_homₓ'. -/
 @[simp, reassoc.1]
 theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.mapGlueData F).ι i :=
   by
@@ -369,11 +479,18 @@ theorem ι_gluedIso_hom (i : D.J) : F.map (D.ι i) ≫ (D.gluedIso F).Hom = (D.m
   rfl
 #align category_theory.glue_data.ι_glued_iso_hom CategoryTheory.GlueData.ι_gluedIso_hom
 
+/- warning: category_theory.glue_data.ι_glued_iso_inv -> CategoryTheory.GlueData.ι_gluedIso_inv is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.GlueData.u.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.GlueData.u.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i) (CategoryTheory.Iso.inv.{u1, u3} C' _inst_2 (CategoryTheory.Functor.obj.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.gluedIso._proof_1.{u2, u3, u1} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (CategoryTheory.Functor.map.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {C' : Type.{u3}} [_inst_2 : CategoryTheory.Category.{u1, u3} C'] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) (F : CategoryTheory.Functor.{u1, u1, u2, u3} C _inst_1 C' _inst_2) [H : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, u3} C _inst_1 C' _inst_2 CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, u3} C _inst_1 C' _inst_2 (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2) (CategoryTheory.GlueData.U.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) i) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.ι.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4) i) (CategoryTheory.Iso.inv.{u1, u3} C' _inst_2 (Prefunctor.obj.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.GlueData.glued.{u1, u3} C' _inst_2 (CategoryTheory.GlueData.mapGlueData.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k)) (CategoryTheory.GlueData.hasColimit_mapGlueData_diagram.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4)) (CategoryTheory.GlueData.gluedIso.{u1, u2, u3} C _inst_1 C' _inst_2 D F (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => H i j k) _inst_3 _inst_4))) (Prefunctor.map.{succ u1, succ u1, u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) C' (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C' (CategoryTheory.Category.toCategoryStruct.{u1, u3} C' _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u3} C _inst_1 C' _inst_2 F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_invₓ'. -/
 @[simp, reassoc.1]
 theorem ι_gluedIso_inv (i : D.J) : (D.mapGlueData F).ι i ≫ (D.gluedIso F).inv = F.map (D.ι i) := by
   rw [iso.comp_inv_eq, ι_glued_iso_hom]
 #align category_theory.glue_data.ι_glued_iso_inv CategoryTheory.GlueData.ι_gluedIso_inv
 
+#print CategoryTheory.GlueData.vPullbackConeIsLimitOfMap /-
 /-- If `F` preserves the gluing, and reflects the pullback of `U i ⟶ glued` and `U j ⟶ glued`,
 then `F` reflects the fact that `V_pullback_cone` is a pullback. -/
 def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι j)) F]
@@ -397,9 +514,16 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
     change _ = _ ≫ (_ ≫ _) ≫ _
     all_goals change _ = 𝟙 _ ≫ _ ≫ _; simpa
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
+-/
 
 omit H
 
+/- warning: category_theory.glue_data.ι_jointly_surjective -> CategoryTheory.GlueData.ι_jointly_surjective is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] (F : CategoryTheory.Functor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}) [_inst_5 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.CategoryTheory.smallCategory.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] [_inst_6 : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.v.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (x : CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)), Exists.{succ u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => Exists.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) (fun (y : CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i)) => Eq.{succ u1} (CategoryTheory.Functor.obj.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (CategoryTheory.Functor.map.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F (CategoryTheory.GlueData.u.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i) y) x))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (D : CategoryTheory.GlueData.{u1, u2} C _inst_1) [_inst_3 : CategoryTheory.Limits.HasMulticoequalizer.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)] (F : CategoryTheory.Functor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}) [_inst_5 : CategoryTheory.Limits.PreservesColimit.{u1, u1, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} (CategoryTheory.Limits.WalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.WalkingMultispan.instSmallCategoryWalkingMultispan.{u1} (CategoryTheory.Limits.MultispanIndex.L.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.R.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.fstFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) (CategoryTheory.Limits.MultispanIndex.sndFrom.{u1, u1, u2} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D))) (CategoryTheory.Limits.MultispanIndex.multispan.{u1, u2, u1} C _inst_1 (CategoryTheory.GlueData.diagram.{u1, u2} C _inst_1 D)) F] [_inst_6 : forall (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (j : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (k : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D), CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i j)) (CategoryTheory.GlueData.V.{u1, u2} C _inst_1 D (Prod.mk.{u1, u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) i k)) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i j) (CategoryTheory.GlueData.f.{u1, u2} C _inst_1 D i k)) F] (x : Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)), Exists.{succ u1} (CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) (fun (i : CategoryTheory.GlueData.J.{u1, u2} C _inst_1 D) => Exists.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) (fun (y : Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i)) => Eq.{succ u1} (Prefunctor.obj.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3)) (Prefunctor.map.{succ u1, succ u1, u2, succ u1} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Type.{u1} (CategoryTheory.CategoryStruct.toQuiver.{u1, succ u1} Type.{u1} (CategoryTheory.Category.toCategoryStruct.{u1, succ u1} Type.{u1} CategoryTheory.types.{u1})) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} F) (CategoryTheory.GlueData.U.{u1, u2} C _inst_1 D i) (CategoryTheory.GlueData.glued.{u1, u2} C _inst_1 D _inst_3) (CategoryTheory.GlueData.ι.{u1, u2} C _inst_1 D _inst_3 i) y) x))
+Case conversion may be inaccurate. Consider using '#align category_theory.glue_data.ι_jointly_surjective CategoryTheory.GlueData.ι_jointly_surjectiveₓ'. -/
 /-- If there is a forgetful functor into `Type` that preserves enough (co)limits, then `D.ι` will
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
Diff
@@ -204,12 +204,12 @@ def glued : C :=
 
 /-- The map `D.U i ⟶ D.glued` for each `i`. -/
 def ι (i : D.J) : D.U i ⟶ D.glued :=
-  multicoequalizer.π D.diagram i
+  Multicoequalizer.π D.diagram i
 #align category_theory.glue_data.ι CategoryTheory.GlueData.ι
 
 @[simp, elementwise]
 theorem glue_condition (i j : D.J) : D.t i j ≫ D.f j i ≫ D.ι j = D.f i j ≫ D.ι i :=
-  (Category.assoc _ _ _).symm.trans (multicoequalizer.condition D.diagram ⟨i, j⟩).symm
+  (Category.assoc _ _ _).symm.trans (Multicoequalizer.condition D.diagram ⟨i, j⟩).symm
 #align category_theory.glue_data.glue_condition CategoryTheory.GlueData.glue_condition
 
 /-- The pullback cone spanned by `V i j ⟶ U i` and `V i j ⟶ U j`.
@@ -222,7 +222,7 @@ variable [HasColimits C]
 
 /-- The projection `∐ D.U ⟶ D.glued` given by the colimit. -/
 def π : D.sigmaOpens ⟶ D.glued :=
-  multicoequalizer.sigmaπ D.diagram
+  Multicoequalizer.sigmaπ D.diagram
 #align category_theory.glue_data.π CategoryTheory.GlueData.π
 
 instance π_epi : Epi D.π := by
Diff
@@ -350,7 +350,7 @@ include H
 attribute [local instance] has_colimit_multispan_comp
 
 theorem has_colimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).diagram :=
-  hasColimit_of_iso (D.diagramIso F).symm
+  hasColimitOfIso (D.diagramIso F).symm
 #align category_theory.glue_data.has_colimit_map_glue_data_diagram CategoryTheory.GlueData.has_colimit_mapGlueData_diagram
 
 attribute [local instance] has_colimit_map_glue_data_diagram
Diff
@@ -341,16 +341,16 @@ variable [HasMulticoequalizer D.diagram] [PreservesColimit D.diagram.multispan F
 
 omit H
 
-theorem hasColimitMultispanComp : HasColimit (D.diagram.multispan ⋙ F) :=
+theorem hasColimit_multispan_comp : HasColimit (D.diagram.multispan ⋙ F) :=
   ⟨⟨⟨_, PreservesColimit.preserves (colimit.isColimit _)⟩⟩⟩
-#align category_theory.glue_data.has_colimit_multispan_comp CategoryTheory.GlueData.hasColimitMultispanComp
+#align category_theory.glue_data.has_colimit_multispan_comp CategoryTheory.GlueData.hasColimit_multispan_comp
 
 include H
 
 attribute [local instance] has_colimit_multispan_comp
 
 theorem has_colimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).diagram :=
-  hasColimitOfIso (D.diagramIso F).symm
+  hasColimit_of_iso (D.diagramIso F).symm
 #align category_theory.glue_data.has_colimit_map_glue_data_diagram CategoryTheory.GlueData.has_colimit_mapGlueData_diagram
 
 attribute [local instance] has_colimit_map_glue_data_diagram

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -381,7 +381,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
   apply hc.ofIsoLimit
   refine Cones.ext (Iso.refl _) ?_
   rintro (_ | _ | _)
-  change _ = _ ≫ (_ ≫ _) ≫ _
+  on_goal 1 => change _ = _ ≫ (_ ≫ _) ≫ _
   all_goals change _ = 𝟙 _ ≫ _ ≫ _; aesop_cat
 set_option linter.uppercaseLean3 false in
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
chore: classify porting notes referring to missing linters (#12098)

Reference the newly created issues #12094 and #12096, as well as the pre-existing #5171. Change all references to #10927 to #5171. Some of these changes were not labelled as "porting note"; change this for good measure.

Diff
@@ -45,7 +45,7 @@ such that
     `t' : V i j ×[U i] V i k ⟶ V j k ×[U j] V j i`.
 10. `t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _`.
 -/
--- Porting note: This linter does not exist yet
+-- Porting note(#5171): linter not ported yet
 -- @[nolint has_nonempty_instance]
 structure GlueData where
   J : Type v
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -15,7 +15,7 @@ import Mathlib.CategoryTheory.Limits.Shapes.Types
 # Gluing data
 
 We define `GlueData` as a family of data needed to glue topological spaces, schemes, etc. We
-provide the API to realize it as a multispan diagram, and also states lemmas about its
+provide the API to realize it as a multispan diagram, and also state lemmas about its
 interaction with a functor that preserves certain pullbacks.
 
 -/
@@ -370,10 +370,8 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
     (hc : IsLimit ((D.mapGlueData F).vPullbackCone i j)) : IsLimit (D.vPullbackCone i j) := by
   apply isLimitOfReflects F
   apply (isLimitMapConePullbackConeEquiv _ _).symm _
-  let e :
-    cospan (F.map (D.ι i)) (F.map (D.ι j)) ≅
-      cospan ((D.mapGlueData F).ι i) ((D.mapGlueData F).ι j)
-  exact
+  let e : cospan (F.map (D.ι i)) (F.map (D.ι j)) ≅
+      cospan ((D.mapGlueData F).ι i) ((D.mapGlueData F).ι j) :=
     NatIso.ofComponents
       (fun x => by
         cases x
@@ -381,10 +379,10 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
       (by rintro (_ | _) (_ | _) (_ | _ | _) <;> simp)
   apply IsLimit.postcomposeHomEquiv e _ _
   apply hc.ofIsoLimit
-  refine' Cones.ext (Iso.refl _) _
-  · rintro (_ | _ | _)
-    change _ = _ ≫ (_ ≫ _) ≫ _
-    all_goals change _ = 𝟙 _ ≫ _ ≫ _; aesop_cat
+  refine Cones.ext (Iso.refl _) ?_
+  rintro (_ | _ | _)
+  change _ = _ ≫ (_ ≫ _) ≫ _
+  all_goals change _ = 𝟙 _ ≫ _ ≫ _; aesop_cat
 set_option linter.uppercaseLean3 false in
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
 
chore: remove useless include and omit porting notes (#10503)
Diff
@@ -249,9 +249,6 @@ theorem types_ι_jointly_surjective (D : GlueData (Type v)) (x : D.glued) :
 
 variable (F : C ⥤ C') [H : ∀ i j k, PreservesLimit (cospan (D.f i j) (D.f i k)) F]
 
--- porting note: commented out include
--- include H
-
 instance (i j k : D.J) : HasPullback (F.map (D.f i j)) (F.map (D.f i k)) :=
   ⟨⟨⟨_, isLimitOfHasPullbackOfPreservesLimit F (D.f i j) (D.f i k)⟩⟩⟩
 
@@ -335,16 +332,10 @@ theorem diagramIso_inv_app_right (i : D.J) :
 
 variable [HasMulticoequalizer D.diagram] [PreservesColimit D.diagram.multispan F]
 
--- porting note: commented out omit
--- omit H
-
 theorem hasColimit_multispan_comp : HasColimit (D.diagram.multispan ⋙ F) :=
   ⟨⟨⟨_, PreservesColimit.preserves (colimit.isColimit _)⟩⟩⟩
 #align category_theory.glue_data.has_colimit_multispan_comp CategoryTheory.GlueData.hasColimit_multispan_comp
 
--- porting note: commented out include
--- include H
-
 attribute [local instance] hasColimit_multispan_comp
 
 theorem hasColimit_mapGlueData_diagram : HasMulticoequalizer (D.mapGlueData F).diagram :=
@@ -397,9 +388,6 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
 set_option linter.uppercaseLean3 false in
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
 
--- porting note: commenting out omit
--- omit H
-
 /-- If there is a forgetful functor into `Type` that preserves enough (co)limits, then `D.ι` will
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
chore(CategoryTheory): universe polymorphic CategoryTheory.Limits.Types.coproductIso (#8421)

Fixes a typo requiring matching universe levels in CategoryTheory.Limits.Types.coproductIso.

Diff
@@ -232,13 +232,13 @@ theorem types_π_surjective (D : GlueData (Type*)) : Function.Surjective D.π :=
   (epi_iff_surjective _).mp inferInstance
 #align category_theory.glue_data.types_π_surjective CategoryTheory.GlueData.types_π_surjective
 
-theorem types_ι_jointly_surjective (D : GlueData (Type*)) (x : D.glued) :
+theorem types_ι_jointly_surjective (D : GlueData (Type v)) (x : D.glued) :
     ∃ (i : _) (y : D.U i), D.ι i y = x := by
   delta CategoryTheory.GlueData.ι
   simp_rw [← Multicoequalizer.ι_sigmaπ D.diagram]
   rcases D.types_π_surjective x with ⟨x', rfl⟩
   --have := colimit.isoColimitCocone (Types.coproductColimitCocone _)
-  rw [← show (colimit.isoColimitCocone (Types.coproductColimitCocone _)).inv _ = x' from
+  rw [← show (colimit.isoColimitCocone (Types.coproductColimitCocone.{v, v} _)).inv _ = x' from
       ConcreteCategory.congr_hom
         (colimit.isoColimitCocone (Types.coproductColimitCocone _)).hom_inv_id x']
   rcases (colimit.isoColimitCocone (Types.coproductColimitCocone _)).hom x' with ⟨i, y⟩
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -241,7 +241,7 @@ theorem types_ι_jointly_surjective (D : GlueData (Type*)) (x : D.glued) :
   rw [← show (colimit.isoColimitCocone (Types.coproductColimitCocone _)).inv _ = x' from
       ConcreteCategory.congr_hom
         (colimit.isoColimitCocone (Types.coproductColimitCocone _)).hom_inv_id x']
-  rcases(colimit.isoColimitCocone (Types.coproductColimitCocone _)).hom x' with ⟨i, y⟩
+  rcases (colimit.isoColimitCocone (Types.coproductColimitCocone _)).hom x' with ⟨i, y⟩
   exact ⟨i, y, by
     simp [← Multicoequalizer.ι_sigmaπ, -Multicoequalizer.ι_sigmaπ]
     rfl ⟩
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -228,11 +228,11 @@ instance π_epi : Epi D.π := by
 
 end
 
-theorem types_π_surjective (D : GlueData (Type _)) : Function.Surjective D.π :=
+theorem types_π_surjective (D : GlueData (Type*)) : Function.Surjective D.π :=
   (epi_iff_surjective _).mp inferInstance
 #align category_theory.glue_data.types_π_surjective CategoryTheory.GlueData.types_π_surjective
 
-theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
+theorem types_ι_jointly_surjective (D : GlueData (Type*)) (x : D.glued) :
     ∃ (i : _) (y : D.U i), D.ι i y = x := by
   delta CategoryTheory.GlueData.ι
   simp_rw [← Multicoequalizer.ι_sigmaπ D.diagram]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
-
-! This file was ported from Lean 3 source module category_theory.glue_data
-! leanprover-community/mathlib commit 14b69e9f3c16630440a2cbd46f1ddad0d561dee7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Tactic.CategoryTheory.Elementwise
 import Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
@@ -14,6 +9,8 @@ import Mathlib.CategoryTheory.Limits.Constructions.EpiMono
 import Mathlib.CategoryTheory.Limits.Preserves.Limits
 import Mathlib.CategoryTheory.Limits.Shapes.Types
 
+#align_import category_theory.glue_data from "leanprover-community/mathlib"@"14b69e9f3c16630440a2cbd46f1ddad0d561dee7"
+
 /-!
 # Gluing data
 
chore: fix many typos (#4983)

These are all doc fixes

Diff
@@ -338,7 +338,7 @@ theorem diagramIso_inv_app_right (i : D.J) :
 
 variable [HasMulticoequalizer D.diagram] [PreservesColimit D.diagram.multispan F]
 
--- porting note: commented out omi
+-- porting note: commented out omit
 -- omit H
 
 theorem hasColimit_multispan_comp : HasColimit (D.diagram.multispan ⋙ F) :=
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -236,7 +236,7 @@ theorem types_π_surjective (D : GlueData (Type _)) : Function.Surjective D.π :
 #align category_theory.glue_data.types_π_surjective CategoryTheory.GlueData.types_π_surjective
 
 theorem types_ι_jointly_surjective (D : GlueData (Type _)) (x : D.glued) :
-    ∃ (i : _)(y : D.U i), D.ι i y = x := by
+    ∃ (i : _) (y : D.U i), D.ι i y = x := by
   delta CategoryTheory.GlueData.ι
   simp_rw [← Multicoequalizer.ι_sigmaπ D.diagram]
   rcases D.types_π_surjective x with ⟨x', rfl⟩
@@ -407,7 +407,7 @@ set_option linter.uppercaseLean3 false in
 be jointly surjective. -/
 theorem ι_jointly_surjective (F : C ⥤ Type v) [PreservesColimit D.diagram.multispan F]
     [∀ i j k : D.J, PreservesLimit (cospan (D.f i j) (D.f i k)) F] (x : F.obj D.glued) :
-    ∃ (i : _)(y : F.obj (D.U i)), F.map (D.ι i) y = x := by
+    ∃ (i : _) (y : F.obj (D.U i)), F.map (D.ι i) y = x := by
   let e := D.gluedIso F
   obtain ⟨i, y, eq⟩ := (D.mapGlueData F).types_ι_jointly_surjective (e.hom x)
   replace eq := congr_arg e.inv eq
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -389,7 +389,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
     NatIso.ofComponents
       (fun x => by
         cases x
-        exacts[D.gluedIso F, Iso.refl _])
+        exacts [D.gluedIso F, Iso.refl _])
       (by rintro (_ | _) (_ | _) (_ | _ | _) <;> simp)
   apply IsLimit.postcomposeHomEquiv e _ _
   apply hc.ofIsoLimit
chore: review of automation in category theory (#4793)

Clean up of automation in the category theory library. Leaving out unnecessary proof steps, or fields done by aesop_cat, and making more use of available autoparameters.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -396,7 +396,7 @@ def vPullbackConeIsLimitOfMap (i j : D.J) [ReflectsLimit (cospan (D.ι i) (D.ι
   refine' Cones.ext (Iso.refl _) _
   · rintro (_ | _ | _)
     change _ = _ ≫ (_ ≫ _) ≫ _
-    all_goals change _ = 𝟙 _ ≫ _ ≫ _; simp; aesop_cat
+    all_goals change _ = 𝟙 _ ≫ _ ≫ _; aesop_cat
 set_option linter.uppercaseLean3 false in
 #align category_theory.glue_data.V_pullback_cone_is_limit_of_map CategoryTheory.GlueData.vPullbackConeIsLimitOfMap
 
chore: move category theory tactics to Tactic/CategoryTheory (#4461)
Diff
@@ -8,7 +8,7 @@ Authors: Andrew Yang
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathlib.Tactic.Elementwise
+import Mathlib.Tactic.CategoryTheory.Elementwise
 import Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
 import Mathlib.CategoryTheory.Limits.Constructions.EpiMono
 import Mathlib.CategoryTheory.Limits.Preserves.Limits
feat: port CategoryTheory.GlueData (#3099)

Co-authored-by: Moritz Firsching <firsching@google.com>

Dependencies 2 + 245

246 files ported (99.2%)
102834 lines ported (99.9%)
Show graph

The unported dependencies are