category_theory.grothendieckMathlib.CategoryTheory.Grothendieck

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -84,10 +84,10 @@ theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
   by
   cases f <;> cases g
   congr
-  dsimp at w_base 
+  dsimp at w_base
   induction w_base
   rfl
-  dsimp at w_base 
+  dsimp at w_base
   induction w_base
   simpa using w_fiber
 #align category_theory.grothendieck.ext CategoryTheory.Grothendieck.ext
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 -/
-import Mathbin.CategoryTheory.Category.Cat
-import Mathbin.CategoryTheory.Elements
+import CategoryTheory.Category.Cat
+import CategoryTheory.Elements
 
 #align_import category_theory.grothendieck from "leanprover-community/mathlib"@"75be6b616681ab6ca66d798ead117e75cd64f125"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module category_theory.grothendieck
-! leanprover-community/mathlib commit 75be6b616681ab6ca66d798ead117e75cd64f125
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Category.Cat
 import Mathbin.CategoryTheory.Elements
 
+#align_import category_theory.grothendieck from "leanprover-community/mathlib"@"75be6b616681ab6ca66d798ead117e75cd64f125"
+
 /-!
 # The Grothendieck construction
 
Diff
@@ -50,6 +50,7 @@ variable {C D : Type _} [Category C] [Category D]
 
 variable (F : C ⥤ Cat)
 
+#print CategoryTheory.Grothendieck /-
 /--
 The Grothendieck construction (often written as `∫ F` in mathematics) for a functor `F : C ⥤ Cat`
 gives a category whose
@@ -63,11 +64,13 @@ structure Grothendieck where
   base : C
   fiber : F.obj base
 #align category_theory.grothendieck CategoryTheory.Grothendieck
+-/
 
 namespace Grothendieck
 
 variable {F}
 
+#print CategoryTheory.Grothendieck.Hom /-
 /-- A morphism in the Grothendieck category `F : C ⥤ Cat` consists of
 `base : X.base ⟶ Y.base` and `f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber`.
 -/
@@ -75,7 +78,9 @@ structure Hom (X Y : Grothendieck F) where
   base : X.base ⟶ Y.base
   fiber : (F.map base).obj X.fiber ⟶ Y.fiber
 #align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Hom
+-/
 
+#print CategoryTheory.Grothendieck.ext /-
 @[ext]
 theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
     (w_fiber : eqToHom (by rw [w_base]) ≫ f.fiber = g.fiber) : f = g :=
@@ -89,7 +94,9 @@ theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
   induction w_base
   simpa using w_fiber
 #align category_theory.grothendieck.ext CategoryTheory.Grothendieck.ext
+-/
 
+#print CategoryTheory.Grothendieck.id /-
 /-- The identity morphism in the Grothendieck category.
 -/
 @[simps]
@@ -97,10 +104,12 @@ def id (X : Grothendieck F) : Hom X X where
   base := 𝟙 X.base
   fiber := eqToHom (by erw [CategoryTheory.Functor.map_id, functor.id_obj X.fiber])
 #align category_theory.grothendieck.id CategoryTheory.Grothendieck.id
+-/
 
 instance (X : Grothendieck F) : Inhabited (Hom X X) :=
   ⟨id X⟩
 
+#print CategoryTheory.Grothendieck.comp /-
 /-- Composition of morphisms in the Grothendieck category.
 -/
 @[simps]
@@ -110,6 +119,7 @@ def comp {X Y Z : Grothendieck F} (f : Hom X Y) (g : Hom Y Z) : Hom X Z
   fiber :=
     eqToHom (by erw [functor.map_comp, functor.comp_obj]) ≫ (F.map g.base).map f.fiber ≫ g.fiber
 #align category_theory.grothendieck.comp CategoryTheory.Grothendieck.comp
+-/
 
 attribute [local simp] eq_to_hom_map
 
@@ -135,26 +145,32 @@ instance : Category (Grothendieck F)
       simp
       rfl
 
+#print CategoryTheory.Grothendieck.id_fiber' /-
 @[simp]
 theorem id_fiber' (X : Grothendieck F) :
     Hom.fiber (𝟙 X) = eqToHom (by erw [CategoryTheory.Functor.map_id, functor.id_obj X.fiber]) :=
   id_fiber X
 #align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'
+-/
 
+#print CategoryTheory.Grothendieck.congr /-
 theorem congr {X Y : Grothendieck F} {f g : X ⟶ Y} (h : f = g) :
     f.fiber = eqToHom (by subst h) ≫ g.fiber := by subst h; dsimp; simp
 #align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congr
+-/
 
 section
 
 variable (F)
 
+#print CategoryTheory.Grothendieck.forget /-
 /-- The forgetful functor from `grothendieck F` to the source category. -/
 @[simps]
 def forget : Grothendieck F ⥤ C where
   obj X := X.1
   map X Y f := f.1
 #align category_theory.grothendieck.forget CategoryTheory.Grothendieck.forget
+-/
 
 end
 
@@ -162,6 +178,7 @@ universe w
 
 variable (G : C ⥤ Type w)
 
+#print CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor /-
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
@@ -169,7 +186,9 @@ def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
   obj X := ⟨X.1, X.2.as⟩
   map X Y f := ⟨f.1, f.2.1.1⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_functor CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor
+-/
 
+#print CategoryTheory.Grothendieck.grothendieckTypeToCatInverse /-
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
@@ -177,7 +196,9 @@ def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
   obj X := ⟨X.1, ⟨X.2⟩⟩
   map X Y f := ⟨f.1, ⟨⟨f.2⟩⟩⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_inverse CategoryTheory.Grothendieck.grothendieckTypeToCatInverse
+-/
 
+#print CategoryTheory.Grothendieck.grothendieckTypeToCat /-
 /-- The Grothendieck construction applied to a functor to `Type`
 (thought of as a functor to `Cat` by realising a type as a discrete category)
 is the same as the 'category of elements' construction.
@@ -195,6 +216,7 @@ def grothendieckTypeToCat : Grothendieck (G ⋙ typeToCat) ≌ G.Elements
       (by rintro ⟨⟩ ⟨⟩ ⟨f, e⟩; dsimp at *; subst e; ext; simp)
   functor_unitIso_comp' := by rintro ⟨_, ⟨⟩⟩; dsimp; simp; rfl
 #align category_theory.grothendieck.grothendieck_Type_to_Cat CategoryTheory.Grothendieck.grothendieckTypeToCat
+-/
 
 end Grothendieck
 
Diff
@@ -82,10 +82,10 @@ theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
   by
   cases f <;> cases g
   congr
-  dsimp at w_base
+  dsimp at w_base 
   induction w_base
   rfl
-  dsimp at w_base
+  dsimp at w_base 
   induction w_base
   simpa using w_fiber
 #align category_theory.grothendieck.ext CategoryTheory.Grothendieck.ext
Diff
@@ -50,12 +50,6 @@ variable {C D : Type _} [Category C] [Category D]
 
 variable (F : C ⥤ Cat)
 
-/- warning: category_theory.grothendieck -> CategoryTheory.Grothendieck is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) -> Sort.{max (succ u1) (succ u4)}
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}) -> Sort.{max (succ u1) (succ u3)}
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck CategoryTheory.Grothendieckₓ'. -/
 /--
 The Grothendieck construction (often written as `∫ F` in mathematics) for a functor `F : C ⥤ Cat`
 gives a category whose
@@ -74,12 +68,6 @@ namespace Grothendieck
 
 variable {F}
 
-/- warning: category_theory.grothendieck.hom -> CategoryTheory.Grothendieck.Hom is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}}, (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> Sort.{max (succ u2) (succ u3)}
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}}, (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> Sort.{max (succ u2) (succ u4)}
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Homₓ'. -/
 /-- A morphism in the Grothendieck category `F : C ⥤ Cat` consists of
 `base : X.base ⟶ Y.base` and `f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber`.
 -/
@@ -88,9 +76,6 @@ structure Hom (X Y : Grothendieck F) where
   fiber : (F.map base).obj X.fiber ⟶ Y.fiber
 #align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Hom
 
-/- warning: category_theory.grothendieck.ext -> CategoryTheory.Grothendieck.ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.ext CategoryTheory.Grothendieck.extₓ'. -/
 @[ext]
 theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
     (w_fiber : eqToHom (by rw [w_base]) ≫ f.fiber = g.fiber) : f = g :=
@@ -105,12 +90,6 @@ theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
   simpa using w_fiber
 #align category_theory.grothendieck.ext CategoryTheory.Grothendieck.ext
 
-/- warning: category_theory.grothendieck.id -> CategoryTheory.Grothendieck.id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X X
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X X
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.id CategoryTheory.Grothendieck.idₓ'. -/
 /-- The identity morphism in the Grothendieck category.
 -/
 @[simps]
@@ -122,12 +101,6 @@ def id (X : Grothendieck F) : Hom X X where
 instance (X : Grothendieck F) : Inhabited (Hom X X) :=
   ⟨id X⟩
 
-/- warning: category_theory.grothendieck.comp -> CategoryTheory.Grothendieck.comp is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Z : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F}, (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F Y Z) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Z)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Z : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F}, (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F Y Z) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Z)
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.comp CategoryTheory.Grothendieck.compₓ'. -/
 /-- Composition of morphisms in the Grothendieck category.
 -/
 @[simps]
@@ -162,18 +135,12 @@ instance : Category (Grothendieck F)
       simp
       rfl
 
-/- warning: category_theory.grothendieck.id_fiber' -> CategoryTheory.Grothendieck.id_fiber' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'ₓ'. -/
 @[simp]
 theorem id_fiber' (X : Grothendieck F) :
     Hom.fiber (𝟙 X) = eqToHom (by erw [CategoryTheory.Functor.map_id, functor.id_obj X.fiber]) :=
   id_fiber X
 #align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'
 
-/- warning: category_theory.grothendieck.congr -> CategoryTheory.Grothendieck.congr is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congrₓ'. -/
 theorem congr {X Y : Grothendieck F} {f g : X ⟶ Y} (h : f = g) :
     f.fiber = eqToHom (by subst h) ≫ g.fiber := by subst h; dsimp; simp
 #align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congr
@@ -182,12 +149,6 @@ section
 
 variable (F)
 
-/- warning: category_theory.grothendieck.forget -> CategoryTheory.Grothendieck.forget is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}), CategoryTheory.Functor.{max u2 u3, u2, max u1 u4, u1} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F) C _inst_1
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}), CategoryTheory.Functor.{max u2 u4, u2, max u3 u1, u1} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u1, u2, u3, u4} C _inst_1 F) C _inst_1
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.forget CategoryTheory.Grothendieck.forgetₓ'. -/
 /-- The forgetful functor from `grothendieck F` to the source category. -/
 @[simps]
 def forget : Grothendieck F ⥤ C where
@@ -201,12 +162,6 @@ universe w
 
 variable (G : C ⥤ Type w)
 
-/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat_functor -> CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Functor.{max u2 u3, u2, max u1 u3, max u1 u3} (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Functor.{max u1 u3, u3, max u1 u2, max u1 u2} (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G)
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat_functor CategoryTheory.Grothendieck.grothendieckTypeToCatFunctorₓ'. -/
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
@@ -215,12 +170,6 @@ def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
   map X Y f := ⟨f.1, f.2.1.1⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_functor CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor
 
-/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat_inverse -> CategoryTheory.Grothendieck.grothendieckTypeToCatInverse is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Functor.{u2, max u2 u3, max u1 u3, max u1 u3} (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3}))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Functor.{u3, max u1 u3, max u1 u2, max u1 u2} (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1}))
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat_inverse CategoryTheory.Grothendieck.grothendieckTypeToCatInverseₓ'. -/
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
@@ -229,12 +178,6 @@ def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
   map X Y f := ⟨f.1, ⟨⟨f.2⟩⟩⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_inverse CategoryTheory.Grothendieck.grothendieckTypeToCatInverse
 
-/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat -> CategoryTheory.Grothendieck.grothendieckTypeToCat is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Equivalence.{max u2 u3, u2, max u1 u3, max u1 u3} (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Equivalence.{max u1 u3, u3, max u1 u2, max u1 u2} (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G)
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat CategoryTheory.Grothendieck.grothendieckTypeToCatₓ'. -/
 /-- The Grothendieck construction applied to a functor to `Type`
 (thought of as a functor to `Cat` by realising a type as a discrete category)
 is the same as the 'category of elements' construction.
Diff
@@ -175,11 +175,7 @@ theorem id_fiber' (X : Grothendieck F) :
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congrₓ'. -/
 theorem congr {X Y : Grothendieck F} {f g : X ⟶ Y} (h : f = g) :
-    f.fiber = eqToHom (by subst h) ≫ g.fiber :=
-  by
-  subst h
-  dsimp
-  simp
+    f.fiber = eqToHom (by subst h) ≫ g.fiber := by subst h; dsimp; simp
 #align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congr
 
 section
@@ -249,32 +245,12 @@ def grothendieckTypeToCat : Grothendieck (G ⋙ typeToCat) ≌ G.Elements
   Functor := grothendieckTypeToCatFunctor G
   inverse := grothendieckTypeToCatInverse G
   unitIso :=
-    NatIso.ofComponents
-      (fun X => by
-        rcases X with ⟨_, ⟨⟩⟩
-        exact iso.refl _)
-      (by
-        rintro ⟨_, ⟨⟩⟩ ⟨_, ⟨⟩⟩ ⟨base, ⟨⟨f⟩⟩⟩
-        dsimp at *
-        subst f
-        ext
-        simp)
+    NatIso.ofComponents (fun X => by rcases X with ⟨_, ⟨⟩⟩; exact iso.refl _)
+      (by rintro ⟨_, ⟨⟩⟩ ⟨_, ⟨⟩⟩ ⟨base, ⟨⟨f⟩⟩⟩; dsimp at *; subst f; ext; simp)
   counitIso :=
-    NatIso.ofComponents
-      (fun X => by
-        cases X
-        exact iso.refl _)
-      (by
-        rintro ⟨⟩ ⟨⟩ ⟨f, e⟩
-        dsimp at *
-        subst e
-        ext
-        simp)
-  functor_unitIso_comp' := by
-    rintro ⟨_, ⟨⟩⟩
-    dsimp
-    simp
-    rfl
+    NatIso.ofComponents (fun X => by cases X; exact iso.refl _)
+      (by rintro ⟨⟩ ⟨⟩ ⟨f, e⟩; dsimp at *; subst e; ext; simp)
+  functor_unitIso_comp' := by rintro ⟨_, ⟨⟩⟩; dsimp; simp; rfl
 #align category_theory.grothendieck.grothendieck_Type_to_Cat CategoryTheory.Grothendieck.grothendieckTypeToCat
 
 end Grothendieck
Diff
@@ -89,10 +89,7 @@ structure Hom (X Y : Grothendieck F) where
 #align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Hom
 
 /- warning: category_theory.grothendieck.ext -> CategoryTheory.Grothendieck.ext is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} (f : CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) (g : CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) (w_base : Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)), (Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.CategoryStruct.comp.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (Eq.ndrec.{0, succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f) (fun (_a : Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) _a) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g) w_base)) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))))) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y g)) -> (Eq.{max (succ u2) (succ u3)} (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) f g)
-but is expected to have type
-  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} {X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} (f : CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) (g : CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) (w_base : Eq.{succ u3} (Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.CategoryStruct.comp.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.ndrec.{0, succ u3} (Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f) (fun (_a : Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) _a)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g) w_base)) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y g)) -> (Eq.{max (succ u3) (succ u1)} (CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) f g)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.ext CategoryTheory.Grothendieck.extₓ'. -/
 @[ext]
 theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
@@ -166,10 +163,7 @@ instance : Category (Grothendieck F)
       rfl
 
 /- warning: category_theory.grothendieck.id_fiber' -> CategoryTheory.Grothendieck.id_fiber' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X)) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.ndrec.{0, succ (max u3 u4)} (Quiver.Hom.{succ (max u3 u4), max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.CategoryStruct.toQuiver.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4})) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (fun (_a : Quiver.Hom.{succ (max u3 u4), max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.CategoryStruct.toQuiver.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4})) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map_id.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)))) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.ndrec.{0, succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.id.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (fun (_a : coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Functor.id_obj.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))))
-but is expected to have type
-  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} (X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.ndrec.{0, succ (max u2 u1)} (Quiver.Hom.{succ (max u2 u1), max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.CategoryStruct.id.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (fun (_a : Quiver.Hom.{succ (max u2 u1), max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) _a) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Functor.map_id.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.ndrec.{0, succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Functor.id.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (fun (_a : CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Functor.id_obj.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'ₓ'. -/
 @[simp]
 theorem id_fiber' (X : Grothendieck F) :
@@ -178,10 +172,7 @@ theorem id_fiber' (X : Grothendieck F) :
 #align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'
 
 /- warning: category_theory.grothendieck.congr -> CategoryTheory.Grothendieck.congr is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {f : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} {g : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} (h : Eq.{succ (max u2 u3)} (Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y) f g), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y f) (CategoryTheory.CategoryStruct.comp.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.ndrec.{0, succ (max u2 u3)} (Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y) f (fun {g : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} => Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) g h)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y g))
-but is expected to have type
-  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} {X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {f : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} {g : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} (h : Eq.{max (succ u3) (succ u1)} (Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y) f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y f) (CategoryTheory.CategoryStruct.comp.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.ndrec.{0, max (succ u3) (succ u1)} (Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y) f (fun {g : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} => Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) g h)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y g))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congrₓ'. -/
 theorem congr {X Y : Grothendieck F} {f g : X ⟶ Y} (h : f = g) :
     f.fiber = eqToHom (by subst h) ≫ g.fiber :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
 
 ! This file was ported from Lean 3 source module category_theory.grothendieck
-! leanprover-community/mathlib commit 14b69e9f3c16630440a2cbd46f1ddad0d561dee7
+! leanprover-community/mathlib commit 75be6b616681ab6ca66d798ead117e75cd64f125
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.CategoryTheory.Elements
 /-!
 # The Grothendieck construction
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Given a functor `F : C ⥤ Cat`, the objects of `grothendieck F`
 consist of dependent pairs `(b, f)`, where `b : C` and `f : F.obj c`,
 and a morphism `(b, f) ⟶ (b', f')` is a pair `β : b ⟶ b'` in `C`, and
Diff
@@ -47,6 +47,12 @@ variable {C D : Type _} [Category C] [Category D]
 
 variable (F : C ⥤ Cat)
 
+/- warning: category_theory.grothendieck -> CategoryTheory.Grothendieck is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) -> Sort.{max (succ u1) (succ u4)}
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}) -> Sort.{max (succ u1) (succ u3)}
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck CategoryTheory.Grothendieckₓ'. -/
 /--
 The Grothendieck construction (often written as `∫ F` in mathematics) for a functor `F : C ⥤ Cat`
 gives a category whose
@@ -65,6 +71,12 @@ namespace Grothendieck
 
 variable {F}
 
+/- warning: category_theory.grothendieck.hom -> CategoryTheory.Grothendieck.Hom is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}}, (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> Sort.{max (succ u2) (succ u3)}
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}}, (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) -> Sort.{max (succ u2) (succ u4)}
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Homₓ'. -/
 /-- A morphism in the Grothendieck category `F : C ⥤ Cat` consists of
 `base : X.base ⟶ Y.base` and `f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber`.
 -/
@@ -73,6 +85,12 @@ structure Hom (X Y : Grothendieck F) where
   fiber : (F.map base).obj X.fiber ⟶ Y.fiber
 #align category_theory.grothendieck.hom CategoryTheory.Grothendieck.Hom
 
+/- warning: category_theory.grothendieck.ext -> CategoryTheory.Grothendieck.ext is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} (f : CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) (g : CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) (w_base : Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)), (Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.CategoryStruct.comp.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (Eq.ndrec.{0, succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f) (fun (_a : Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) _a) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g) w_base)) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))))) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y g)) -> (Eq.{max (succ u2) (succ u3)} (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) f g)
+but is expected to have type
+  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} {X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} (f : CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) (g : CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) (w_base : Eq.{succ u3} (Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.CategoryStruct.comp.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.ndrec.{0, succ u3} (Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f) (fun (_a : Quiver.Hom.{succ u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) _a)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g) w_base)) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y g)) -> (Eq.{max (succ u3) (succ u1)} (CategoryTheory.Grothendieck.Hom.{u4, u3, u2, u1} C _inst_1 F X Y) f g)
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.ext CategoryTheory.Grothendieck.extₓ'. -/
 @[ext]
 theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
     (w_fiber : eqToHom (by rw [w_base]) ≫ f.fiber = g.fiber) : f = g :=
@@ -87,6 +105,12 @@ theorem ext {X Y : Grothendieck F} (f g : Hom X Y) (w_base : f.base = g.base)
   simpa using w_fiber
 #align category_theory.grothendieck.ext CategoryTheory.Grothendieck.ext
 
+/- warning: category_theory.grothendieck.id -> CategoryTheory.Grothendieck.id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X X
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X X
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.id CategoryTheory.Grothendieck.idₓ'. -/
 /-- The identity morphism in the Grothendieck category.
 -/
 @[simps]
@@ -98,6 +122,12 @@ def id (X : Grothendieck F) : Hom X X where
 instance (X : Grothendieck F) : Inhabited (Hom X X) :=
   ⟨id X⟩
 
+/- warning: category_theory.grothendieck.comp -> CategoryTheory.Grothendieck.comp is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Z : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F}, (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F Y Z) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Z)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Z : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F}, (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Y) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F Y Z) -> (CategoryTheory.Grothendieck.Hom.{u1, u2, u3, u4} C _inst_1 F X Z)
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.comp CategoryTheory.Grothendieck.compₓ'. -/
 /-- Composition of morphisms in the Grothendieck category.
 -/
 @[simps]
@@ -132,12 +162,24 @@ instance : Category (Grothendieck F)
       simp
       rfl
 
+/- warning: category_theory.grothendieck.id_fiber' -> CategoryTheory.Grothendieck.id_fiber' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} (X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X)) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.ndrec.{0, succ (max u3 u4)} (Quiver.Hom.{succ (max u3 u4), max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.CategoryStruct.toQuiver.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4})) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (fun (_a : Quiver.Hom.{succ (max u3 u4), max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.CategoryStruct.toQuiver.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4})) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F)) X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.map_id.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)))) (Eq.mpr.{0} (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (Eq.ndrec.{0, succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.id.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (fun (_a : coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{1} Prop (Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} (CategoryTheory.Category.toCategoryStruct.{max u3 u4, max (succ u4) u4 (succ u3)} CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}) (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Functor.id_obj.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)))))
+but is expected to have type
+  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} (X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.ndrec.{0, succ (max u2 u1)} (Quiver.Hom.{succ (max u2 u1), max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.CategoryStruct.id.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (fun (_a : Quiver.Hom.{succ (max u2 u1), max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) _a) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X X (CategoryTheory.CategoryStruct.id.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F)) X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Functor.map_id.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.mpr.{0} (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (id.{0} (Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.ndrec.{0, succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Functor.id.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (fun (_a : CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) => Eq.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) _a (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{1} Prop (Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}) (Prefunctor.obj.{succ u3, succ (max u2 u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X)))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Functor.id_obj.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'ₓ'. -/
 @[simp]
 theorem id_fiber' (X : Grothendieck F) :
     Hom.fiber (𝟙 X) = eqToHom (by erw [CategoryTheory.Functor.map_id, functor.id_obj X.fiber]) :=
   id_fiber X
 #align category_theory.grothendieck.id_fiber' CategoryTheory.Grothendieck.id_fiber'
 
+/- warning: category_theory.grothendieck.congr -> CategoryTheory.Grothendieck.congr is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}} {X : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F} {f : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} {g : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} (h : Eq.{succ (max u2 u3)} (Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y) f g), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y f) (CategoryTheory.CategoryStruct.comp.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y)))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.eqToHom.{u3, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (Eq.ndrec.{0, succ (max u2 u3)} (Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y) f (fun {g : Quiver.Hom.{succ (max u2 u3), max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max u1 u4} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F))) X Y} => Eq.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X)) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y g)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) (rfl.{succ u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.obj.{u3, u3, u4, u4} (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X))) (coeSort.{succ (max (succ u4) u4 (succ u3)), succ (succ u4)} CategoryTheory.Cat.{u3, u4} Type.{u4} CategoryTheory.Cat.hasCoeToSort.{u4, u3} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u3, u4} (CategoryTheory.Functor.obj.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y))) (CategoryTheory.Functor.map.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4} F (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u1, u2, u3, u4} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u1, u2, u3, u4} C _inst_1 F X Y f)) (CategoryTheory.Grothendieck.fiber.{u1, u2, u3, u4} C _inst_1 F X))) g h)) (CategoryTheory.Grothendieck.Hom.fiber.{u1, u2, u3, u4} C _inst_1 F X Y g))
+but is expected to have type
+  forall {C : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u3, u4} C] {F : CategoryTheory.Functor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2}} {X : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {Y : CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F} {f : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} {g : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} (h : Eq.{max (succ u3) (succ u1)} (Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y) f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y f) (CategoryTheory.CategoryStruct.comp.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y)))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.eqToHom.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Eq.ndrec.{0, max (succ u3) (succ u1)} (Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y) f (fun {g : Quiver.Hom.{max (succ u3) (succ u1), max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u4 u2} (CategoryTheory.Grothendieck.{u4, u3, u2, u1} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u4, u3, u2, u1} C _inst_1 F))) X Y} => Eq.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X)) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y g))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) (Eq.refl.{succ u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.obj.{succ u1, succ u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Category.toCategoryStruct.{u1, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, u2} (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X))) (CategoryTheory.Bundled.α.{u2, max u2 (succ u1)} CategoryTheory.Category.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (CategoryTheory.Cat.str.{u1, u2} (Prefunctor.obj.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y))) (Prefunctor.map.{succ u3, max (succ u2) (succ u1), u4, max (succ u2) (succ u1)} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} C (CategoryTheory.Category.toCategoryStruct.{u3, u4} C _inst_1)) CategoryTheory.Cat.{u1, u2} (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (succ u2) (succ u1)} CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2})) (CategoryTheory.Functor.toPrefunctor.{u3, max u2 u1, u4, max (succ u2) (succ u1)} C _inst_1 CategoryTheory.Cat.{u1, u2} CategoryTheory.Cat.category.{u1, u2} F) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F X) (CategoryTheory.Grothendieck.base.{u4, u3, u2, u1} C _inst_1 F Y) (CategoryTheory.Grothendieck.Hom.base.{u4, u3, u2, u1} C _inst_1 F X Y f))) (CategoryTheory.Grothendieck.fiber.{u4, u3, u2, u1} C _inst_1 F X))) g h)) (CategoryTheory.Grothendieck.Hom.fiber.{u4, u3, u2, u1} C _inst_1 F X Y g))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.congr CategoryTheory.Grothendieck.congrₓ'. -/
 theorem congr {X Y : Grothendieck F} {f g : X ⟶ Y} (h : f = g) :
     f.fiber = eqToHom (by subst h) ≫ g.fiber :=
   by
@@ -150,6 +192,12 @@ section
 
 variable (F)
 
+/- warning: category_theory.grothendieck.forget -> CategoryTheory.Grothendieck.forget is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u4) u4 (succ u3)} C _inst_1 CategoryTheory.Cat.{u3, u4} CategoryTheory.Cat.category.{u3, u4}), CategoryTheory.Functor.{max u2 u3, u2, max u1 u4, u1} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u4} C _inst_1 F) C _inst_1
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (F : CategoryTheory.Functor.{u2, max u3 u4, u1, max (succ u3) (succ u4)} C _inst_1 CategoryTheory.Cat.{u4, u3} CategoryTheory.Cat.category.{u4, u3}), CategoryTheory.Functor.{max u2 u4, u2, max u3 u1, u1} (CategoryTheory.Grothendieck.{u1, u2, u3, u4} C _inst_1 F) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u1, u2, u3, u4} C _inst_1 F) C _inst_1
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.forget CategoryTheory.Grothendieck.forgetₓ'. -/
 /-- The forgetful functor from `grothendieck F` to the source category. -/
 @[simps]
 def forget : Grothendieck F ⥤ C where
@@ -163,6 +211,12 @@ universe w
 
 variable (G : C ⥤ Type w)
 
+/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat_functor -> CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Functor.{max u2 u3, u2, max u1 u3, max u1 u3} (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Functor.{max u1 u3, u3, max u1 u2, max u1 u2} (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G)
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat_functor CategoryTheory.Grothendieck.grothendieckTypeToCatFunctorₓ'. -/
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
@@ -171,6 +225,12 @@ def grothendieckTypeToCatFunctor : Grothendieck (G ⋙ typeToCat) ⥤ G.Elements
   map X Y f := ⟨f.1, f.2.1.1⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_functor CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor
 
+/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat_inverse -> CategoryTheory.Grothendieck.grothendieckTypeToCatInverse is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Functor.{u2, max u2 u3, max u1 u3, max u1 u3} (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3}))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Functor.{u3, max u1 u3, max u1 u2, max u1 u2} (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1}))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat_inverse CategoryTheory.Grothendieck.grothendieckTypeToCatInverseₓ'. -/
 /-- Auxiliary definition for `grothendieck_Type_to_Cat`, to speed up elaboration. -/
 @[simps]
 def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
@@ -179,6 +239,12 @@ def grothendieckTypeToCatInverse : G.Elements ⥤ Grothendieck (G ⋙ typeToCat)
   map X Y f := ⟨f.1, ⟨⟨f.2⟩⟩⟩
 #align category_theory.grothendieck.grothendieck_Type_to_Cat_inverse CategoryTheory.Grothendieck.grothendieckTypeToCatInverse
 
+/- warning: category_theory.grothendieck.grothendieck_Type_to_Cat -> CategoryTheory.Grothendieck.grothendieckTypeToCat is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] (G : CategoryTheory.Functor.{u2, u3, u1, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3}), CategoryTheory.Equivalence.{max u2 u3, u2, max u1 u3, max u1 u3} (CategoryTheory.Grothendieck.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Grothendieck.CategoryTheory.category.{u1, u2, u3, u3} C _inst_1 (CategoryTheory.Functor.comp.{u2, u3, u3, u1, succ u3, succ u3} C _inst_1 Type.{u3} CategoryTheory.types.{u3} CategoryTheory.Cat.{u3, u3} CategoryTheory.Cat.category.{u3, u3} G CategoryTheory.typeToCat.{u3})) (CategoryTheory.Functor.Elements.{u3, u2, u1} C _inst_1 G) (CategoryTheory.categoryOfElements.{u3, u2, u1} C _inst_1 G)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] (G : CategoryTheory.Functor.{u3, u1, u2, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1}), CategoryTheory.Equivalence.{max u1 u3, u3, max u1 u2, max u1 u2} (CategoryTheory.Grothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.Functor.Elements.{u1, u3, u2} C _inst_1 G) (CategoryTheory.Grothendieck.instCategoryGrothendieck.{u2, u3, u1, u1} C _inst_1 (CategoryTheory.Functor.comp.{u3, u1, u1, u2, succ u1, succ u1} C _inst_1 Type.{u1} CategoryTheory.types.{u1} CategoryTheory.Cat.{u1, u1} CategoryTheory.Cat.category.{u1, u1} G CategoryTheory.typeToCat.{u1})) (CategoryTheory.categoryOfElements.{u1, u3, u2} C _inst_1 G)
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck.grothendieck_Type_to_Cat CategoryTheory.Grothendieck.grothendieckTypeToCatₓ'. -/
 /-- The Grothendieck construction applied to a functor to `Type`
 (thought of as a functor to `Cat` by realising a type as a discrete category)
 is the same as the 'category of elements' construction.

Changes in mathlib4

mathlib3
mathlib4
chore: classify porting notes referring to missing linters (#12098)

Reference the newly created issues #12094 and #12096, as well as the pre-existing #5171. Change all references to #10927 to #5171. Some of these changes were not labelled as "porting note"; change this for good measure.

Diff
@@ -51,7 +51,7 @@ gives a category whose
   `base : X.base ⟶ Y.base` and
   `f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber`
 -/
--- Porting note: no such linter yet
+-- Porting note(#5171): no such linter yet
 -- @[nolint has_nonempty_instance]
 structure Grothendieck where
   /-- The underlying object in `C` -/
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -41,7 +41,6 @@ universe u
 namespace CategoryTheory
 
 variable {C D : Type*} [Category C] [Category D]
-
 variable (F : C ⥤ Cat)
 
 /--
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -52,7 +52,7 @@ gives a category whose
   `base : X.base ⟶ Y.base` and
   `f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber`
 -/
--- porting note: no such linter yet
+-- Porting note: no such linter yet
 -- @[nolint has_nonempty_instance]
 structure Grothendieck where
   /-- The underlying object in `C` -/
chore: cleanup some spaces (#7484)

Purely cosmetic PR.

Diff
@@ -196,7 +196,7 @@ def grothendieckTypeToCat : Grothendieck (G ⋙ typeToCat) ≌ G.Elements where
         rintro ⟨_, ⟨⟩⟩ ⟨_, ⟨⟩⟩ ⟨base, ⟨⟨f⟩⟩⟩
         dsimp at *
         simp
-        rfl )
+        rfl)
   counitIso :=
     NatIso.ofComponents
       (fun X => by
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -40,7 +40,7 @@ universe u
 
 namespace CategoryTheory
 
-variable {C D : Type _} [Category C] [Category D]
+variable {C D : Type*} [Category C] [Category D]
 
 variable (F : C ⥤ Cat)
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison
-
-! This file was ported from Lean 3 source module category_theory.grothendieck
-! leanprover-community/mathlib commit 14b69e9f3c16630440a2cbd46f1ddad0d561dee7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Category.Cat
 import Mathlib.CategoryTheory.Elements
 
+#align_import category_theory.grothendieck from "leanprover-community/mathlib"@"14b69e9f3c16630440a2cbd46f1ddad0d561dee7"
+
 /-!
 # The Grothendieck construction
 
chore: bump to nightly-2023-07-01 (#5409)

Open in Gitpod

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -114,14 +114,14 @@ instance : Category (Grothendieck F) where
   id X := Grothendieck.id X
   comp := @fun X Y Z f g => Grothendieck.comp f g
   comp_id := @fun X Y f => by
-    dsimp; ext; swap
+    dsimp; ext
     · simp
     · dsimp
       rw [← NatIso.naturality_2 (eqToIso (F.map_id Y.base)) f.fiber]
       simp
   id_comp := @fun X Y f => by dsimp; ext <;> simp
   assoc := @fun W X Y Z f g h => by
-    dsimp; ext; swap
+    dsimp; ext
     · simp
     · dsimp
       rw [← NatIso.naturality_2 (eqToIso (F.map_comp _ _)) f.fiber]
feat: port CategoryTheory.Grothendieck (#3204)

Co-authored-by: Moritz Firsching <firsching@google.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 107

108 files ported (100.0%)
40606 lines ported (100.0%)

All dependencies are ported!