category_theory.idempotents.homological_complexMathlib.CategoryTheory.Idempotents.HomologicalComplex

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.Algebra.Homology.Additive
-import Mathbin.CategoryTheory.Idempotents.Karoubi
+import Algebra.Homology.Additive
+import CategoryTheory.Idempotents.Karoubi
 
 #align_import category_theory.idempotents.homological_complex from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module category_theory.idempotents.homological_complex
-! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Homology.Additive
 import Mathbin.CategoryTheory.Idempotents.Karoubi
 
+#align_import category_theory.idempotents.homological_complex from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+
 /-!
 # Idempotent completeness and homological complexes
 
Diff
@@ -41,27 +41,35 @@ namespace HomologicalComplex
 
 variable {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) (n : ι)
 
+#print CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d /-
 @[simp, reassoc]
 theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
   HomologicalComplex.congr_hom (p_comp f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d
+-/
 
+#print CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d /-
 @[simp, reassoc]
 theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
   HomologicalComplex.congr_hom (comp_p f) n
 #align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d
+-/
 
+#print CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f /-
 @[reassoc]
 theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
   HomologicalComplex.congr_hom (p_comm f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f
+-/
 
 variable (P)
 
+#print CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem /-
 @[simp, reassoc]
 theorem p_idem : P.p.f n ≫ P.p.f n = P.p.f n :=
   HomologicalComplex.congr_hom P.idem n
 #align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem
+-/
 
 end HomologicalComplex
 
@@ -73,6 +81,7 @@ namespace KaroubiHomologicalComplexEquivalence
 
 namespace Functor
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj /-
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on objects. -/
 @[simps]
@@ -86,7 +95,9 @@ def obj (P : Karoubi (HomologicalComplex C c)) : HomologicalComplex (Karoubi C)
       comm := by tidy }
   shape' i j hij := by simp only [hom_eq_zero_iff, P.X.shape i j hij, limits.comp_zero]
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj
+-/
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map /-
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on morphisms. -/
 @[simps]
@@ -95,9 +106,11 @@ def map {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) : obj P ⟶ obj Q
     { f := f.f.f n
       comm := by simp }
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map
+-/
 
 end Functor
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor /-
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`. -/
 @[simps]
 def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c
@@ -105,9 +118,11 @@ def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C
   obj := Functor.obj
   map P Q f := Functor.map f
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor
+-/
 
 namespace Inverse
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj /-
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on objects -/
 @[simps]
@@ -124,7 +139,9 @@ def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c
       comm' := by simp }
   idem := by tidy
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj
+-/
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map /-
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on morphisms -/
 @[simps]
@@ -135,9 +152,11 @@ def map {K L : HomologicalComplex (Karoubi C) c} (f : K ⟶ L) : obj K ⟶ obj L
       comm' := fun i j hij => by simpa only [comp_f] using hom_ext.mp (f.comm' i j hij) }
   comm := by tidy
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map
+-/
 
 end Inverse
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse /-
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`. -/
 @[simps]
 def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c)
@@ -145,14 +164,18 @@ def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C
   obj := Inverse.obj
   map K L f := Inverse.map f
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse
+-/
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso /-
 /-- The counit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
 def counitIso : inverse ⋙ functor ≅ 𝟭 (HomologicalComplex (Karoubi C) c) :=
   eqToIso (Functor.ext (fun P => HomologicalComplex.ext (by tidy) (by tidy)) (by tidy))
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso
+-/
 
+#print CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso /-
 /-- The unit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
@@ -195,11 +218,13 @@ def unitIso : 𝟭 (Karoubi (HomologicalComplex C c)) ≅ functor ⋙ inverse
     simp only [homological_complex.p_idem, comp_f, HomologicalComplex.comp_f, id_eq,
       inverse.obj_p_f, functor.obj_X_p]
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso
+-/
 
 end KaroubiHomologicalComplexEquivalence
 
 variable (C) (c)
 
+#print CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence /-
 /-- The equivalence `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
 def karoubiHomologicalComplexEquivalence :
@@ -210,21 +235,26 @@ def karoubiHomologicalComplexEquivalence :
   unitIso := KaroubiHomologicalComplexEquivalence.unitIso
   counitIso := KaroubiHomologicalComplexEquivalence.counitIso
 #align category_theory.idempotents.karoubi_homological_complex_equivalence CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence
+-/
 
 variable (α : Type _) [AddRightCancelSemigroup α] [One α]
 
+#print CategoryTheory.Idempotents.karoubiChainComplexEquivalence /-
 /-- The equivalence `karoubi (chain_complex C α) ≌ chain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiChainComplexEquivalence : Karoubi (ChainComplex C α) ≌ ChainComplex (Karoubi C) α :=
   karoubiHomologicalComplexEquivalence C (ComplexShape.down α)
 #align category_theory.idempotents.karoubi_chain_complex_equivalence CategoryTheory.Idempotents.karoubiChainComplexEquivalence
+-/
 
+#print CategoryTheory.Idempotents.karoubiCochainComplexEquivalence /-
 /-- The equivalence `karoubi (cochain_complex C α) ≌ cochain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiCochainComplexEquivalence :
     Karoubi (CochainComplex C α) ≌ CochainComplex (Karoubi C) α :=
   karoubiHomologicalComplexEquivalence C (ComplexShape.up α)
 #align category_theory.idempotents.karoubi_cochain_complex_equivalence CategoryTheory.Idempotents.karoubiCochainComplexEquivalence
+-/
 
 instance [IsIdempotentComplete C] : IsIdempotentComplete (HomologicalComplex C c) :=
   by
Diff
@@ -41,25 +41,16 @@ namespace HomologicalComplex
 
 variable {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) (n : ι)
 
-/- warning: category_theory.idempotents.karoubi.homological_complex.p_comp_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_dₓ'. -/
 @[simp, reassoc]
 theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
   HomologicalComplex.congr_hom (p_comp f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d
 
-/- warning: category_theory.idempotents.karoubi.homological_complex.comp_p_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_dₓ'. -/
 @[simp, reassoc]
 theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
   HomologicalComplex.congr_hom (comp_p f) n
 #align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d
 
-/- warning: category_theory.idempotents.karoubi.homological_complex.p_comm_f -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_fₓ'. -/
 @[reassoc]
 theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
   HomologicalComplex.congr_hom (p_comm f) n
@@ -67,9 +58,6 @@ theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
 
 variable (P)
 
-/- warning: category_theory.idempotents.karoubi.homological_complex.p_idem -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idemₓ'. -/
 @[simp, reassoc]
 theorem p_idem : P.p.f n ≫ P.p.f n = P.p.f n :=
   HomologicalComplex.congr_hom P.idem n
@@ -85,12 +73,6 @@ namespace KaroubiHomologicalComplexEquivalence
 
 namespace Functor
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) -> (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) -> (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.objₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on objects. -/
 @[simps]
@@ -105,12 +87,6 @@ def obj (P : Karoubi (HomologicalComplex C c)) : HomologicalComplex (Karoubi C)
   shape' i j hij := by simp only [hom_eq_zero_iff, P.X.shape i j hij, limits.comp_zero]
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)}, (Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) -> (Quiver.Hom.{succ (max u3 u2), max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c P) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c Q))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)}, (Quiver.Hom.{max (succ u2) (succ u3), max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) -> (Quiver.Hom.{max (succ u2) (succ u3), max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c P) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c Q))
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.mapₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on morphisms. -/
 @[simps]
@@ -122,12 +98,6 @@ def map {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) : obj P ⟶ obj Q
 
 end Functor
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functorₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`. -/
 @[simps]
 def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c
@@ -138,12 +108,6 @@ def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C
 
 namespace Inverse
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) -> (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) -> (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.objₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on objects -/
 @[simps]
@@ -161,9 +125,6 @@ def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c
   idem := by tidy
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.mapₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on morphisms -/
 @[simps]
@@ -177,12 +138,6 @@ def map {K L : HomologicalComplex (Karoubi C) c} (f : K ⟶ L) : obj K ⟶ obj L
 
 end Inverse
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u3 u2 u1) u2, max (max u2 u3) (max u3 u1) u2} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverseₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`. -/
 @[simps]
 def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c)
@@ -191,9 +146,6 @@ def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C
   map K L f := Inverse.map f
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIsoₓ'. -/
 /-- The counit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
@@ -201,9 +153,6 @@ def counitIso : inverse ⋙ functor ≅ 𝟭 (HomologicalComplex (Karoubi C) c)
   eqToIso (Functor.ext (fun P => HomologicalComplex.ext (by tidy) (by tidy)) (by tidy))
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIsoₓ'. -/
 /-- The unit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
@@ -251,12 +200,6 @@ end KaroubiHomologicalComplexEquivalence
 
 variable (C) (c)
 
-/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence -> CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} (c : ComplexShape.{u3} ι), CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
-but is expected to have type
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} (c : ComplexShape.{u3} ι), CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
 def karoubiHomologicalComplexEquivalence :
@@ -270,24 +213,12 @@ def karoubiHomologicalComplexEquivalence :
 
 variable (α : Type _) [AddRightCancelSemigroup α] [One α]
 
-/- warning: category_theory.idempotents.karoubi_chain_complex_equivalence -> CategoryTheory.Idempotents.karoubiChainComplexEquivalence is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (ChainComplex.{u2, max u1 u2, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{u3} α _inst_3 _inst_4))
-but is expected to have type
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (ChainComplex.{u2, max u2 u1, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{u3} α _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_chain_complex_equivalence CategoryTheory.Idempotents.karoubiChainComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (chain_complex C α) ≌ chain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiChainComplexEquivalence : Karoubi (ChainComplex C α) ≌ ChainComplex (Karoubi C) α :=
   karoubiHomologicalComplexEquivalence C (ComplexShape.down α)
 #align category_theory.idempotents.karoubi_chain_complex_equivalence CategoryTheory.Idempotents.karoubiChainComplexEquivalence
 
-/- warning: category_theory.idempotents.karoubi_cochain_complex_equivalence -> CategoryTheory.Idempotents.karoubiCochainComplexEquivalence is a dubious translation:
-lean 3 declaration is
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CochainComplex.{u2, max u1 u2, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.up.{u3} α _inst_3 _inst_4))
-but is expected to have type
-  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CochainComplex.{u2, max u2 u1, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.up.{u3} α _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_cochain_complex_equivalence CategoryTheory.Idempotents.karoubiCochainComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (cochain_complex C α) ≌ cochain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiCochainComplexEquivalence :
Diff
@@ -217,10 +217,7 @@ def unitIso : 𝟭 (Karoubi (HomologicalComplex C c)) ≅ functor ⋙ inverse
                 dsimp
                 simp only [HomologicalComplex.Hom.comm, HomologicalComplex.Hom.comm_assoc,
                   homological_complex.p_idem] }
-          comm := by
-            ext n
-            dsimp
-            simp only [homological_complex.p_idem] }
+          comm := by ext n; dsimp; simp only [homological_complex.p_idem] }
       naturality' := fun P Q φ => by
         ext
         dsimp
@@ -233,10 +230,7 @@ def unitIso : 𝟭 (Karoubi (HomologicalComplex C c)) ≅ functor ⋙ inverse
               comm' := fun i j hij => by
                 dsimp
                 simp only [HomologicalComplex.Hom.comm, assoc, homological_complex.p_idem] }
-          comm := by
-            ext n
-            dsimp
-            simp only [homological_complex.p_idem] }
+          comm := by ext n; dsimp; simp only [homological_complex.p_idem] }
       naturality' := fun P Q φ => by
         ext
         dsimp
Diff
@@ -42,10 +42,7 @@ namespace HomologicalComplex
 variable {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) (n : ι)
 
 /- warning: category_theory.idempotents.karoubi.homological_complex.p_comp_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_dₓ'. -/
 @[simp, reassoc]
 theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
@@ -53,10 +50,7 @@ theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
 #align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d
 
 /- warning: category_theory.idempotents.karoubi.homological_complex.comp_p_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_dₓ'. -/
 @[simp, reassoc]
 theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
@@ -64,10 +58,7 @@ theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
 #align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d
 
 /- warning: category_theory.idempotents.karoubi.homological_complex.p_comm_f -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_fₓ'. -/
 @[reassoc]
 theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
@@ -77,10 +68,7 @@ theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
 variable (P)
 
 /- warning: category_theory.idempotents.karoubi.homological_complex.p_idem -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} (P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} (P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idemₓ'. -/
 @[simp, reassoc]
 theorem p_idem : P.p.f n ≫ P.p.f n = P.p.f n :=
@@ -174,10 +162,7 @@ def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj
 
 /- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {K : HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c} {L : HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c}, (Quiver.Hom.{succ (max u3 u2), max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))) K L) -> (Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c K) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c L))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {K : HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c} {L : HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c}, (Quiver.Hom.{max (succ u2) (succ u3), max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))) K L) -> (Quiver.Hom.{max (succ u2) (succ u3), max (max u3 u2) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c K) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c L))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.mapₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on morphisms -/
@@ -207,10 +192,7 @@ def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse
 
 /- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.category.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c)) (CategoryTheory.Functor.id.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3, max (max u3 u2) u1} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u3 u2) u1, max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.category.{max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max (max u3 u2) u1, max (max u3 u2) u1, max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c)) (CategoryTheory.Functor.id.{max u2 u3, max (max u3 u2 u1) u2} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIsoₓ'. -/
 /-- The counit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
@@ -220,10 +202,7 @@ def counitIso : inverse ⋙ functor ≅ 𝟭 (HomologicalComplex (Karoubi C) c)
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso
 
 /- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.category.{max u3 u2, max u3 u2, max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.id.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u2 u3) (max u3 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.category.{max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.id.{max u2 u3, max (max u2 u3) (max u3 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.comp.{max u2 u3, max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIsoₓ'. -/
 /-- The unit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
Diff
@@ -47,7 +47,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_dₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
   HomologicalComplex.congr_hom (p_comp f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d
@@ -58,7 +58,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_dₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
   HomologicalComplex.congr_hom (comp_p f) n
 #align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d
@@ -69,7 +69,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n))
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_fₓ'. -/
-@[reassoc.1]
+@[reassoc]
 theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
   HomologicalComplex.congr_hom (p_comm f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f
@@ -82,7 +82,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} (P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)
 Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idemₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem p_idem : P.p.f n ≫ P.p.f n = P.p.f n :=
   HomologicalComplex.congr_hom P.idem n
 #align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module category_theory.idempotents.homological_complex
-! leanprover-community/mathlib commit 200eda15d8ff5669854ff6bcc10aaf37cb70498f
+! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.CategoryTheory.Idempotents.Karoubi
 /-!
 # Idempotent completeness and homological complexes
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file contains simplifications lemmas for categories
 `karoubi (homological_complex C c)` and the construction of an equivalence
 of categories `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`.
Diff
@@ -38,16 +38,34 @@ namespace HomologicalComplex
 
 variable {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) (n : ι)
 
+/- warning: category_theory.idempotents.karoubi.homological_complex.p_comp_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_dₓ'. -/
 @[simp, reassoc.1]
 theorem p_comp_d : P.p.f n ≫ f.f.f n = f.f.f n :=
   HomologicalComplex.congr_hom (p_comp f) n
 #align category_theory.idempotents.karoubi.homological_complex.p_comp_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d
 
+/- warning: category_theory.idempotents.karoubi.homological_complex.comp_p_d -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_dₓ'. -/
 @[simp, reassoc.1]
 theorem comp_p_d : f.f.f n ≫ Q.p.f n = f.f.f n :=
   HomologicalComplex.congr_hom (comp_p f) n
 #align category_theory.idempotents.karoubi.homological_complex.comp_p_d CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d
 
+/- warning: category_theory.idempotents.karoubi.homological_complex.p_comm_f -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) Q) n))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)} (f : Quiver.Hom.{max (succ u3) (succ u1), max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max u2 u3) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)))) P Q) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.Hom.f.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P Q f) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) Q) n))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_comm_f CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_fₓ'. -/
 @[reassoc.1]
 theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
   HomologicalComplex.congr_hom (p_comm f) n
@@ -55,6 +73,12 @@ theorem p_comm_f : P.p.f n ≫ f.f.f n = f.f.f n ≫ Q.p.f n :=
 
 variable (P)
 
+/- warning: category_theory.idempotents.karoubi.homological_complex.p_idem -> CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} (P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.x.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)) (HomologicalComplex.Hom.f.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.x.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) P) n)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u3, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u3, u2} C _inst_1] {ι : Type.{u1}} {c : ComplexShape.{u1} ι} (P : CategoryTheory.Idempotents.Karoubi.{max (max u1 u2) u3, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c)) (n : ι), Eq.{succ u3} (Quiver.Hom.{succ u3, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1)) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (CategoryTheory.CategoryStruct.comp.{u3, u2} C (CategoryTheory.Category.toCategoryStruct.{u3, u2} C _inst_1) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.X.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)) (HomologicalComplex.Hom.f.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.X.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) (CategoryTheory.Idempotents.Karoubi.p.{max (max u2 u3) u1, max u3 u1} (HomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u2, u1} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u2} C _inst_1 _inst_2) c) P) n)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi.homological_complex.p_idem CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idemₓ'. -/
 @[simp, reassoc.1]
 theorem p_idem : P.p.f n ≫ P.p.f n = P.p.f n :=
   HomologicalComplex.congr_hom P.idem n
@@ -70,6 +94,12 @@ namespace KaroubiHomologicalComplexEquivalence
 
 namespace Functor
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) -> (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) -> (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.objₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on objects. -/
 @[simps]
@@ -84,6 +114,12 @@ def obj (P : Karoubi (HomologicalComplex C c)) : HomologicalComplex (Karoubi C)
   shape' i j hij := by simp only [hom_eq_zero_iff, P.X.shape i j hij, limits.comp_zero]
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)}, (Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) -> (Quiver.Hom.{succ (max u3 u2), max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c P) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c Q))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {P : CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)} {Q : CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)}, (Quiver.Hom.{max (succ u2) (succ u3), max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) P Q) -> (Quiver.Hom.{max (succ u2) (succ u3), max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c P) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c Q))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.mapₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`,
 on morphisms. -/
 @[simps]
@@ -95,6 +131,12 @@ def map {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) : obj P ⟶ obj Q
 
 end Functor
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.functor -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.functor CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functorₓ'. -/
 /-- The functor `karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c`. -/
 @[simps]
 def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C) c
@@ -105,6 +147,12 @@ def functor : Karoubi (HomologicalComplex C c) ⥤ HomologicalComplex (Karoubi C
 
 namespace Inverse
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) -> (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) -> (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.objₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on objects -/
 @[simps]
@@ -122,6 +170,12 @@ def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c
   idem := by tidy
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {K : HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c} {L : HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c}, (Quiver.Hom.{succ (max u3 u2), max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))) K L) -> (Quiver.Hom.{succ (max u3 u2), max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c K) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c L))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι} {K : HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c} {L : HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c}, (Quiver.Hom.{max (succ u2) (succ u3), max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))) K L) -> (Quiver.Hom.{max (succ u2) (succ u3), max (max u3 u2) u1} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Category.toCategoryStruct.{max u2 u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)))) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c K) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj.{u1, u2, u3} C _inst_1 _inst_2 ι c L))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.mapₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`,
 on morphisms -/
 @[simps]
@@ -135,6 +189,12 @@ def map {K L : HomologicalComplex (Karoubi C) c} (f : K ⟶ L) : obj K ⟶ obj L
 
 end Inverse
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.inverse -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u3 u2 u1) u2, max (max u2 u3) (max u3 u1) u2} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverseₓ'. -/
 /-- The functor `homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)`. -/
 @[simps]
 def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c)
@@ -143,6 +203,12 @@ def inverse : HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C
   map K L f := Inverse.map f
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.category.{max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c)) (CategoryTheory.Functor.id.{max u3 u2, max (max u1 u2) u3 u2} (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3, max (max u3 u2) u1} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max (max u3 u2) u1, max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.category.{max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max (max u3 u2) u1, max (max u3 u2) u1, max (max u3 u2) u1} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c)) (CategoryTheory.Functor.id.{max u2 u3, max (max u3 u2 u1) u2} (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIsoₓ'. -/
 /-- The counit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
@@ -150,6 +216,12 @@ def counitIso : inverse ⋙ functor ≅ 𝟭 (HomologicalComplex (Karoubi C) c)
   eqToIso (Functor.ext (fun P => HomologicalComplex.ext (by tidy) (by tidy)) (by tidy))
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso -> CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Functor.{max u3 u2, max u3 u2, max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.category.{max u3 u2, max u3 u2, max u1 u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.id.{max u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.comp.{max u3 u2, max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2, max u1 u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} {c : ComplexShape.{u3} ι}, CategoryTheory.Iso.{max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Functor.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u2 u3) (max u3 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.category.{max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.id.{max u2 u3, max (max u2 u3) (max u3 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c))) (CategoryTheory.Functor.comp.{max u2 u3, max u2 u3, max u2 u3, max (max u1 u2) u3, max (max u1 u2) u3, max (max u1 u2) u3} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor.{u1, u2, u3} C _inst_1 _inst_2 ι c) (CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse.{u1, u2, u3} C _inst_1 _inst_2 ι c))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIsoₓ'. -/
 /-- The unit isomorphism of the equivalence
 `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
@@ -203,6 +275,12 @@ end KaroubiHomologicalComplexEquivalence
 
 variable (C) (c)
 
+/- warning: category_theory.idempotents.karoubi_homological_complex_equivalence -> CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} (c : ComplexShape.{u3} ι), CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) c)
+but is expected to have type
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {ι : Type.{u3}} (c : ComplexShape.{u3} ι), CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.{u2, max u2 u1, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (HomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} ι C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) c)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} ι (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) c)
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_homological_complex_equivalence CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`. -/
 @[simps]
 def karoubiHomologicalComplexEquivalence :
@@ -216,12 +294,24 @@ def karoubiHomologicalComplexEquivalence :
 
 variable (α : Type _) [AddRightCancelSemigroup α] [One α]
 
+/- warning: category_theory.idempotents.karoubi_chain_complex_equivalence -> CategoryTheory.Idempotents.karoubiChainComplexEquivalence is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (ChainComplex.{u2, max u1 u2, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{u3} α _inst_3 _inst_4))
+but is expected to have type
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (ChainComplex.{u2, max u2 u1, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (ChainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{u3} α _inst_3 _inst_4))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{u3} α _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_chain_complex_equivalence CategoryTheory.Idempotents.karoubiChainComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (chain_complex C α) ≌ chain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiChainComplexEquivalence : Karoubi (ChainComplex C α) ≌ ChainComplex (Karoubi C) α :=
   karoubiHomologicalComplexEquivalence C (ComplexShape.down α)
 #align category_theory.idempotents.karoubi_chain_complex_equivalence CategoryTheory.Idempotents.karoubiChainComplexEquivalence
 
+/- warning: category_theory.idempotents.karoubi_cochain_complex_equivalence -> CategoryTheory.Idempotents.karoubiCochainComplexEquivalence is a dubious translation:
+lean 3 declaration is
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u3 u2, max u3 u2, max u1 u3 u2, max (max u1 u2) u3 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u3 u2, max u3 u2} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u3 u2, max u3 u2} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CochainComplex.{u2, max u1 u2, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.up.{u3} α _inst_3 _inst_4))
+but is expected to have type
+  forall (C : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (α : Type.{u3}) [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α], CategoryTheory.Equivalence.{max u2 u3, max u2 u3, max (max u2 u3) (max u3 u1) u2, max (max u3 u2 u1) u2} (CategoryTheory.Idempotents.Karoubi.{max (max u3 u1) u2, max u2 u3} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (CochainComplex.{u2, max u2 u1, u3} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) α _inst_3 _inst_4) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max (max u1 u2) u3, max u2 u3} (CochainComplex.{u2, u1, u3} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, u3} α C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.up.{u3} α _inst_3 _inst_4))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, max u1 u2, u3} α (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.up.{u3} α _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align category_theory.idempotents.karoubi_cochain_complex_equivalence CategoryTheory.Idempotents.karoubiCochainComplexEquivalenceₓ'. -/
 /-- The equivalence `karoubi (cochain_complex C α) ≌ cochain_complex (karoubi C) α`. -/
 @[simps]
 def karoubiCochainComplexEquivalence :
Diff
@@ -4,11 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module category_theory.idempotents.homological_complex
-! leanprover-community/mathlib commit 31019c2504b17f85af7e0577585fad996935a317
+! leanprover-community/mathlib commit 200eda15d8ff5669854ff6bcc10aaf37cb70498f
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.Algebra.Homology.HomologicalComplex
+import Mathbin.Algebra.Homology.Additive
 import Mathbin.CategoryTheory.Idempotents.Karoubi
 
 /-!
@@ -18,6 +18,9 @@ This file contains simplifications lemmas for categories
 `karoubi (homological_complex C c)` and the construction of an equivalence
 of categories `karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c`.
 
+When the category `C` is idempotent complete, it is shown that
+`homological_complex (karoubi C) c` is also idempotent complete.
+
 -/
 
 
@@ -226,6 +229,13 @@ def karoubiCochainComplexEquivalence :
   karoubiHomologicalComplexEquivalence C (ComplexShape.up α)
 #align category_theory.idempotents.karoubi_cochain_complex_equivalence CategoryTheory.Idempotents.karoubiCochainComplexEquivalence
 
+instance [IsIdempotentComplete C] : IsIdempotentComplete (HomologicalComplex C c) :=
+  by
+  rw [is_idempotent_complete_iff_of_equivalence
+      ((to_karoubi_equivalence C).mapHomologicalComplex c),
+    ← is_idempotent_complete_iff_of_equivalence (karoubi_homological_complex_equivalence C c)]
+  infer_instance
+
 end Idempotents
 
 end CategoryTheory
Diff
@@ -72,11 +72,11 @@ on objects. -/
 @[simps]
 def obj (P : Karoubi (HomologicalComplex C c)) : HomologicalComplex (Karoubi C) c
     where
-  x n :=
-    ⟨P.x.x n, P.p.f n, by
+  pt n :=
+    ⟨P.pt.pt n, P.p.f n, by
       simpa only [HomologicalComplex.comp_f] using HomologicalComplex.congr_hom P.idem n⟩
   d i j :=
-    { f := P.p.f i ≫ P.x.d i j
+    { f := P.p.f i ≫ P.pt.d i j
       comm := by tidy }
   shape' i j hij := by simp only [hom_eq_zero_iff, P.X.shape i j hij, limits.comp_zero]
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj
@@ -107,14 +107,14 @@ on objects -/
 @[simps]
 def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c)
     where
-  x :=
-    { x := fun n => (K.x n).x
+  pt :=
+    { pt := fun n => (K.pt n).pt
       d := fun i j => (K.d i j).f
       shape' := fun i j hij => hom_eq_zero_iff.mp (K.shape i j hij)
       d_comp_d' := fun i j k hij hjk => by
         simpa only [comp_f] using hom_eq_zero_iff.mp (K.d_comp_d i j k) }
   p :=
-    { f := fun n => (K.x n).p
+    { f := fun n => (K.pt n).p
       comm' := by simp }
   idem := by tidy
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj

Changes in mathlib4

mathlib3
mathlib4
feat: forward port of Mathlib.AlgebraicTopology.DoldKan.Equivalence (#6444)

In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -215,7 +215,7 @@ def karoubiCochainComplexEquivalence :
 
 instance [IsIdempotentComplete C] : IsIdempotentComplete (HomologicalComplex C c) := by
   rw [isIdempotentComplete_iff_of_equivalence
-      ((toKaroubi_equivalence C).mapHomologicalComplex c),
+      ((toKaroubiEquivalence C).mapHomologicalComplex c),
     ← isIdempotentComplete_iff_of_equivalence (karoubiHomologicalComplexEquivalence C c)]
   infer_instance
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -25,7 +25,7 @@ namespace CategoryTheory
 
 open Category
 
-variable {C : Type _} [Category C] [Preadditive C] {ι : Type _} {c : ComplexShape ι}
+variable {C : Type*} [Category C] [Preadditive C] {ι : Type*} {c : ComplexShape ι}
 
 namespace Idempotents
 
@@ -198,7 +198,7 @@ def karoubiHomologicalComplexEquivalence :
   counitIso := KaroubiHomologicalComplexEquivalence.counitIso
 #align category_theory.idempotents.karoubi_homological_complex_equivalence CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence
 
-variable (α : Type _) [AddRightCancelSemigroup α] [One α]
+variable (α : Type*) [AddRightCancelSemigroup α] [One α]
 
 /-- The equivalence `Karoubi (ChainComplex C α) ≌ ChainComplex (Karoubi C) α`. -/
 @[simps!]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module category_theory.idempotents.homological_complex
-! leanprover-community/mathlib commit 200eda15d8ff5669854ff6bcc10aaf37cb70498f
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Homology.Additive
 import Mathlib.CategoryTheory.Idempotents.Karoubi
 
+#align_import category_theory.idempotents.homological_complex from "leanprover-community/mathlib"@"200eda15d8ff5669854ff6bcc10aaf37cb70498f"
+
 /-!
 # Idempotent completeness and homological complexes
 
chore: review of automation in category theory (#4793)

Clean up of automation in the category theory library. Leaving out unnecessary proof steps, or fields done by aesop_cat, and making more use of available autoparameters.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -77,9 +77,7 @@ def obj (P : Karoubi (HomologicalComplex C c)) : HomologicalComplex (Karoubi C)
   X n :=
     ⟨P.X.X n, P.p.f n, by
       simpa only [HomologicalComplex.comp_f] using HomologicalComplex.congr_hom P.idem n⟩
-  d i j :=
-    { f := P.p.f i ≫ P.X.d i j
-      comm := by aesop_cat }
+  d i j := { f := P.p.f i ≫ P.X.d i j }
   shape i j hij := by simp only [hom_eq_zero_iff, P.X.shape i j hij, Limits.comp_zero]; aesop_cat
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj
 
@@ -88,8 +86,7 @@ on morphisms. -/
 @[simps]
 def map {P Q : Karoubi (HomologicalComplex C c)} (f : P ⟶ Q) : obj P ⟶ obj Q where
   f n :=
-    { f := f.f.f n
-      comm := by simp }
+    { f := f.f.f n }
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map
 
 end Functor
@@ -113,10 +110,7 @@ def obj (K : HomologicalComplex (Karoubi C) c) : Karoubi (HomologicalComplex C c
       shape := fun i j hij => hom_eq_zero_iff.mp (K.shape i j hij)
       d_comp_d' := fun i j k _ _ => by
         simpa only [comp_f] using hom_eq_zero_iff.mp (K.d_comp_d i j k) }
-  p :=
-    { f := fun n => (K.X n).p
-      comm' := by simp }
-  idem := by aesop_cat
+  p := { f := fun n => (K.X n).p }
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj
 
 /-- The functor `HomologicalComplex (Karoubi C) c ⥤ Karoubi (HomologicalComplex C c)`,
@@ -126,7 +120,6 @@ def map {K L : HomologicalComplex (Karoubi C) c} (f : K ⟶ L) : obj K ⟶ obj L
   f :=
     { f := fun n => (f.f n).f
       comm' := fun i j hij => by simpa only [comp_f] using hom_ext_iff.mp (f.comm' i j hij) }
-  comm := by aesop_cat
 #align category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map
 
 end Inverse
feat: port CategoryTheory.Idempotents.HomologicalComplex (#3532)

Dependencies 3 + 345

346 files ported (99.1%)
135676 lines ported (99.2%)
Show graph

The unported dependencies are