category_theory.limits.latticeMathlib.CategoryTheory.Limits.Lattice

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,12 +3,12 @@ Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Justus Springer
 -/
-import Mathbin.Order.CompleteLattice
-import Mathbin.Data.Fintype.Lattice
-import Mathbin.CategoryTheory.Limits.Shapes.Pullbacks
-import Mathbin.CategoryTheory.Category.Preorder
-import Mathbin.CategoryTheory.Limits.Shapes.Products
-import Mathbin.CategoryTheory.Limits.Shapes.FiniteLimits
+import Order.CompleteLattice
+import Data.Fintype.Lattice
+import CategoryTheory.Limits.Shapes.Pullbacks
+import CategoryTheory.Category.Preorder
+import CategoryTheory.Limits.Shapes.Products
+import CategoryTheory.Limits.Shapes.FiniteLimits
 
 #align_import category_theory.limits.lattice from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Justus Springer
-
-! This file was ported from Lean 3 source module category_theory.limits.lattice
-! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.CompleteLattice
 import Mathbin.Data.Fintype.Lattice
@@ -15,6 +10,8 @@ import Mathbin.CategoryTheory.Category.Preorder
 import Mathbin.CategoryTheory.Limits.Shapes.Products
 import Mathbin.CategoryTheory.Limits.Shapes.FiniteLimits
 
+#align_import category_theory.limits.lattice from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
+
 /-!
 # Limits in lattice categories are given by infimums and supremums.
 
Diff
@@ -78,6 +78,7 @@ instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [Semilat
 #align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
 -/
 
+#print CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf /-
 /-- The limit of a functor from a finite diagram into a `semilattice_inf` with `order_top` is the
 infimum of the objects in the image.
 -/
@@ -85,7 +86,9 @@ theorem finite_limit_eq_finset_univ_inf [SemilatticeInf α] [OrderTop α] (F : J
     limit F = Finset.univ.inf F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (finiteLimitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup /-
 /-- The colimit of a functor from a finite diagram into a `semilattice_sup` with `order_bot`
 is the supremum of the objects in the image.
 -/
@@ -93,6 +96,7 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
     colimit F = Finset.univ.sup F.obj :=
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (finiteColimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup
+-/
 
 #print CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf /-
 /--
@@ -135,6 +139,7 @@ instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts
     letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α; infer_instance
   apply has_binary_products_of_has_limit_pair
 
+#print CategoryTheory.Limits.CompleteLattice.prod_eq_inf /-
 /-- The binary product in the category of a `semilattice_inf` with `order_top` is the same as the
 infimum.
 -/
@@ -149,6 +154,7 @@ theorem prod_eq_inf [SemilatticeInf α] [OrderTop α] (x y : α) : Limits.prod x
         x ⊓ y :=
       by rw [inf_top_eq]
 #align category_theory.limits.complete_lattice.prod_eq_inf CategoryTheory.Limits.CompleteLattice.prod_eq_inf
+-/
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproducts α :=
@@ -157,6 +163,7 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
     letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α; infer_instance
   apply has_binary_coproducts_of_has_colimit_pair
 
+#print CategoryTheory.Limits.CompleteLattice.coprod_eq_sup /-
 /-- The binary coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -171,7 +178,9 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
         x ⊔ y :=
       by rw [sup_bot_eq]
 #align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.pullback_eq_inf /-
 /-- The pullback in the category of a `semilattice_inf` with `order_top` is the same as the infimum
 over the objects.
 -/
@@ -185,7 +194,9 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
     _ = z ⊓ (x ⊓ y) := by rw [inf_top_eq]
     _ = x ⊓ y := inf_eq_right.mpr (inf_le_of_left_le f.le)
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.pushout_eq_sup /-
 /-- The pushout in the category of a `semilattice_sup` with `order_bot` is the same as the supremum
 over the objects.
 -/
@@ -199,6 +210,7 @@ theorem pushout_eq_sup [SemilatticeSup α] [OrderBot α] (x y z : α) (f : z ⟶
     _ = z ⊔ (x ⊔ y) := by rw [sup_bot_eq]
     _ = x ⊔ y := sup_eq_right.mpr (le_sup_of_le_left f.le)
 #align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_sup
+-/
 
 end Semilattice
 
@@ -252,17 +264,21 @@ instance (priority := 100) hasColimits_of_completeLattice : HasColimits α
 #align category_theory.limits.complete_lattice.has_colimits_of_complete_lattice CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice
 -/
 
+#print CategoryTheory.Limits.CompleteLattice.limit_eq_iInf /-
 /-- The limit of a functor into a complete lattice is the infimum of the objects in the image.
 -/
 theorem limit_eq_iInf (F : J ⥤ α) : limit F = iInf F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (limitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInf
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup /-
 /-- The colimit of a functor into a complete lattice is the supremum of the objects in the image.
 -/
 theorem colimit_eq_iSup (F : J ⥤ α) : colimit F = iSup F.obj :=
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (colimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup
+-/
 
 end CategoryTheory.Limits.CompleteLattice
 
Diff
@@ -148,7 +148,6 @@ theorem prod_eq_inf [SemilatticeInf α] [OrderTop α] (x y : α) : Limits.prod x
         _ =
         x ⊓ y :=
       by rw [inf_top_eq]
-    
 #align category_theory.limits.complete_lattice.prod_eq_inf CategoryTheory.Limits.CompleteLattice.prod_eq_inf
 
 -- see Note [lower instance priority]
@@ -171,7 +170,6 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
         _ =
         x ⊔ y :=
       by rw [sup_bot_eq]
-    
 #align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
 
 /-- The pullback in the category of a `semilattice_inf` with `order_top` is the same as the infimum
@@ -186,7 +184,6 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
     _ = z ⊓ (x ⊓ (y ⊓ ⊤)) := rfl
     _ = z ⊓ (x ⊓ y) := by rw [inf_top_eq]
     _ = x ⊓ y := inf_eq_right.mpr (inf_le_of_left_le f.le)
-    
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
 
 /-- The pushout in the category of a `semilattice_sup` with `order_bot` is the same as the supremum
@@ -201,7 +198,6 @@ theorem pushout_eq_sup [SemilatticeSup α] [OrderBot α] (x y z : α) (f : z ⟶
     _ = z ⊔ (x ⊔ (y ⊔ ⊥)) := rfl
     _ = z ⊔ (x ⊔ y) := by rw [sup_bot_eq]
     _ = x ⊔ y := sup_eq_right.mpr (le_sup_of_le_left f.le)
-    
 #align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_sup
 
 end Semilattice
Diff
@@ -37,6 +37,7 @@ variable {α : Type u}
 
 variable {J : Type w} [SmallCategory J] [FinCategory J]
 
+#print CategoryTheory.Limits.CompleteLattice.finiteLimitCone /-
 /-- The limit cone over any functor from a finite diagram into a `semilattice_inf` with `order_top`.
 -/
 def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone F
@@ -46,7 +47,9 @@ def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone
       π := { app := fun j => homOfLE (Finset.inf_le (Fintype.complete _)) } }
   IsLimit := { lift := fun s => homOfLE (Finset.le_inf fun j _ => (s.π.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitCone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.finiteColimitCocone /-
 /--
 The colimit cocone over any functor from a finite diagram into a `semilattice_sup` with `order_bot`.
 -/
@@ -57,18 +60,23 @@ def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : Colim
       ι := { app := fun i => homOfLE (Finset.le_sup (Fintype.complete _)) } }
   IsColimit := { desc := fun s => homOfLE (Finset.sup_le fun j _ => (s.ι.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop /-
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteLimits_of_semilatticeInf_orderTop [SemilatticeInf α]
     [OrderTop α] : HasFiniteLimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasLimit := fun F => has_limit.mk (finite_limit_cone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot /-
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [SemilatticeSup α]
     [OrderBot α] : HasFiniteColimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasColimit := fun F => has_colimit.mk (finite_colimit_cocone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
+-/
 
 /-- The limit of a functor from a finite diagram into a `semilattice_inf` with `order_top` is the
 infimum of the objects in the image.
@@ -86,6 +94,7 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (finiteColimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup
 
+#print CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf /-
 /--
 A finite product in the category of a `semilattice_inf` with `order_top` is the same as the infimum.
 -/
@@ -100,7 +109,9 @@ theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Typ
   simp only [← Finset.inf_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup /-
 /-- A finite coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -115,6 +126,7 @@ theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : T
   simp only [← Finset.sup_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup
+-/
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts α :=
Diff
@@ -37,12 +37,6 @@ variable {α : Type u}
 
 variable {J : Type w} [SmallCategory J] [FinCategory J]
 
-/- warning: category_theory.limits.complete_lattice.finite_limit_cone -> CategoryTheory.Limits.CompleteLattice.finiteLimitCone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.LimitCone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F
-but is expected to have type
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.LimitCone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitConeₓ'. -/
 /-- The limit cone over any functor from a finite diagram into a `semilattice_inf` with `order_top`.
 -/
 def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone F
@@ -53,12 +47,6 @@ def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone
   IsLimit := { lift := fun s => homOfLE (Finset.le_inf fun j _ => (s.π.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitCone
 
-/- warning: category_theory.limits.complete_lattice.finite_colimit_cocone -> CategoryTheory.Limits.CompleteLattice.finiteColimitCocone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.ColimitCocone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F
-but is expected to have type
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.ColimitCocone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCoconeₓ'. -/
 /--
 The colimit cocone over any functor from a finite diagram into a `semilattice_sup` with `order_bot`.
 -/
@@ -70,36 +58,18 @@ def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : Colim
   IsColimit := { desc := fun s => homOfLE (Finset.sup_le fun j _ => (s.ι.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
 
-/- warning: category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top -> CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteLimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteLimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTopₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteLimits_of_semilatticeInf_orderTop [SemilatticeInf α]
     [OrderTop α] : HasFiniteLimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasLimit := fun F => has_limit.mk (finite_limit_cone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
 
-/- warning: category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot -> CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteColimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteColimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBotₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [SemilatticeSup α]
     [OrderBot α] : HasFiniteColimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasColimit := fun F => has_colimit.mk (finite_colimit_cocone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
 
-/- warning: category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf -> CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F))
-but is expected to have type
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_infₓ'. -/
 /-- The limit of a functor from a finite diagram into a `semilattice_inf` with `order_top` is the
 infimum of the objects in the image.
 -/
@@ -108,12 +78,6 @@ theorem finite_limit_eq_finset_univ_inf [SemilatticeInf α] [OrderTop α] (F : J
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (finiteLimitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf
 
-/- warning: category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup -> CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F))
-but is expected to have type
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_supₓ'. -/
 /-- The colimit of a functor from a finite diagram into a `semilattice_sup` with `order_bot`
 is the supremum of the objects in the image.
 -/
@@ -122,12 +86,6 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (finiteColimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup
 
-/- warning: category_theory.limits.complete_lattice.finite_product_eq_finset_inf -> CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.piObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.inf.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.piObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.inf.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_infₓ'. -/
 /--
 A finite product in the category of a `semilattice_inf` with `order_top` is the same as the infimum.
 -/
@@ -143,12 +101,6 @@ theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Typ
   rfl
 #align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf
 
-/- warning: category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup -> CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.sigmaObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.sup.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.sigmaObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.sup.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_supₓ'. -/
 /-- A finite coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -171,12 +123,6 @@ instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts
     letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α; infer_instance
   apply has_binary_products_of_has_limit_pair
 
-/- warning: category_theory.limits.complete_lattice.prod_eq_inf -> CategoryTheory.Limits.CompleteLattice.prod_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryProducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryProductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.prod_eq_inf CategoryTheory.Limits.CompleteLattice.prod_eq_infₓ'. -/
 /-- The binary product in the category of a `semilattice_inf` with `order_top` is the same as the
 infimum.
 -/
@@ -200,12 +146,6 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
     letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α; infer_instance
   apply has_binary_coproducts_of_has_colimit_pair
 
-/- warning: category_theory.limits.complete_lattice.coprod_eq_sup -> CategoryTheory.Limits.CompleteLattice.coprod_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryCoproducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryCoproductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_supₓ'. -/
 /-- The binary coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -222,12 +162,6 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
     
 #align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
 
-/- warning: category_theory.limits.complete_lattice.pullback_eq_inf -> CategoryTheory.Limits.CompleteLattice.pullback_eq_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_infₓ'. -/
 /-- The pullback in the category of a `semilattice_inf` with `order_top` is the same as the infimum
 over the objects.
 -/
@@ -243,12 +177,6 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
     
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
 
-/- warning: category_theory.limits.complete_lattice.pushout_eq_sup -> CategoryTheory.Limits.CompleteLattice.pushout_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_supₓ'. -/
 /-- The pushout in the category of a `semilattice_sup` with `order_bot` is the same as the supremum
 over the objects.
 -/
@@ -316,24 +244,12 @@ instance (priority := 100) hasColimits_of_completeLattice : HasColimits α
 #align category_theory.limits.complete_lattice.has_colimits_of_complete_lattice CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice
 -/
 
-/- warning: category_theory.limits.complete_lattice.limit_eq_infi -> CategoryTheory.Limits.CompleteLattice.limit_eq_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInfₓ'. -/
 /-- The limit of a functor into a complete lattice is the infimum of the objects in the image.
 -/
 theorem limit_eq_iInf (F : J ⥤ α) : limit F = iInf F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (limitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInf
 
-/- warning: category_theory.limits.complete_lattice.colimit_eq_supr -> CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_iSupₓ'. -/
 /-- The colimit of a functor into a complete lattice is the supremum of the objects in the image.
 -/
 theorem colimit_eq_iSup (F : J ⥤ α) : colimit F = iSup F.obj :=
Diff
@@ -167,10 +167,8 @@ theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : T
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts α :=
   by
-  have : ∀ x y : α, has_limit (pair x y) :=
-    by
-    letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α
-    infer_instance
+  have : ∀ x y : α, has_limit (pair x y) := by
+    letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α; infer_instance
   apply has_binary_products_of_has_limit_pair
 
 /- warning: category_theory.limits.complete_lattice.prod_eq_inf -> CategoryTheory.Limits.CompleteLattice.prod_eq_inf is a dubious translation:
@@ -198,10 +196,8 @@ theorem prod_eq_inf [SemilatticeInf α] [OrderTop α] (x y : α) : Limits.prod x
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproducts α :=
   by
-  have : ∀ x y : α, has_colimit (pair x y) :=
-    by
-    letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α
-    infer_instance
+  have : ∀ x y : α, has_colimit (pair x y) := by
+    letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α; infer_instance
   apply has_binary_coproducts_of_has_colimit_pair
 
 /- warning: category_theory.limits.complete_lattice.coprod_eq_sup -> CategoryTheory.Limits.CompleteLattice.coprod_eq_sup is a dubious translation:
Diff
@@ -37,7 +37,12 @@ variable {α : Type u}
 
 variable {J : Type w} [SmallCategory J] [FinCategory J]
 
-#print CategoryTheory.Limits.CompleteLattice.finiteLimitCone /-
+/- warning: category_theory.limits.complete_lattice.finite_limit_cone -> CategoryTheory.Limits.CompleteLattice.finiteLimitCone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.LimitCone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F
+but is expected to have type
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.LimitCone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitConeₓ'. -/
 /-- The limit cone over any functor from a finite diagram into a `semilattice_inf` with `order_top`.
 -/
 def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone F
@@ -47,9 +52,13 @@ def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone
       π := { app := fun j => homOfLE (Finset.inf_le (Fintype.complete _)) } }
   IsLimit := { lift := fun s => homOfLE (Finset.le_inf fun j _ => (s.π.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitCone
--/
 
-#print CategoryTheory.Limits.CompleteLattice.finiteColimitCocone /-
+/- warning: category_theory.limits.complete_lattice.finite_colimit_cocone -> CategoryTheory.Limits.CompleteLattice.finiteColimitCocone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.ColimitCocone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F
+but is expected to have type
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), CategoryTheory.Limits.ColimitCocone.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCoconeₓ'. -/
 /--
 The colimit cocone over any functor from a finite diagram into a `semilattice_sup` with `order_bot`.
 -/
@@ -60,27 +69,34 @@ def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : Colim
       ι := { app := fun i => homOfLE (Finset.le_sup (Fintype.complete _)) } }
   IsColimit := { desc := fun s => homOfLE (Finset.sup_le fun j _ => (s.ι.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
--/
 
-#print CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop /-
+/- warning: category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top -> CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteLimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteLimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTopₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteLimits_of_semilatticeInf_orderTop [SemilatticeInf α]
     [OrderTop α] : HasFiniteLimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasLimit := fun F => has_limit.mk (finite_limit_cone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
--/
 
-#print CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot /-
+/- warning: category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot -> CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteColimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))], CategoryTheory.Limits.HasFiniteColimits.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBotₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [SemilatticeSup α]
     [OrderBot α] : HasFiniteColimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasColimit := fun F => has_colimit.mk (finite_colimit_cocone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
--/
 
 /- warning: category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf -> CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F))
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F))
 but is expected to have type
   forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F)))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_infₓ'. -/
@@ -94,7 +110,7 @@ theorem finite_limit_eq_finset_univ_inf [SemilatticeInf α] [OrderTop α] (F : J
 
 /- warning: category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup -> CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F))
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F))
 but is expected to have type
   forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F)))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_supₓ'. -/
@@ -106,7 +122,12 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (finiteColimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup
 
-#print CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf /-
+/- warning: category_theory.limits.complete_lattice.finite_product_eq_finset_inf -> CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.piObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.inf.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.piObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.inf.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_infₓ'. -/
 /--
 A finite product in the category of a `semilattice_inf` with `order_top` is the same as the infimum.
 -/
@@ -121,9 +142,13 @@ theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Typ
   simp only [← Finset.inf_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf
--/
 
-#print CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup /-
+/- warning: category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup -> CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.sigmaObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.sup.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] {ι : Type.{u1}} [_inst_5 : Fintype.{u1} ι] (f : ι -> α), Eq.{succ u1} α (CategoryTheory.Limits.sigmaObj.{u1, u1, u1} ι α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) f (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{u1} ι) (CategoryTheory.discreteCategory.{u1} ι) (CategoryTheory.finCategoryDiscreteOfFintype.{u1} ι _inst_5) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Discrete.functor.{u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) ι f))) (Finset.sup.{u1, u1} α ι _inst_3 _inst_4 (Fintype.elems.{u1} ι _inst_5) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_supₓ'. -/
 /-- A finite coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -138,7 +163,6 @@ theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : T
   simp only [← Finset.sup_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup
--/
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts α :=
@@ -151,7 +175,7 @@ instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts
 
 /- warning: category_theory.limits.complete_lattice.prod_eq_inf -> CategoryTheory.Limits.CompleteLattice.prod_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryProducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryProducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryProductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.prod_eq_inf CategoryTheory.Limits.CompleteLattice.prod_eq_infₓ'. -/
@@ -182,7 +206,7 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
 
 /- warning: category_theory.limits.complete_lattice.coprod_eq_sup -> CategoryTheory.Limits.CompleteLattice.coprod_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryCoproducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryCoproducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryCoproductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_supₓ'. -/
@@ -204,7 +228,7 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
 
 /- warning: category_theory.limits.complete_lattice.pullback_eq_inf -> CategoryTheory.Limits.CompleteLattice.pullback_eq_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_infₓ'. -/
@@ -225,7 +249,7 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
 
 /- warning: category_theory.limits.complete_lattice.pushout_eq_sup -> CategoryTheory.Limits.CompleteLattice.pushout_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_supₓ'. -/
Diff
@@ -256,7 +256,7 @@ variable {J : Type u} [SmallCategory J]
 def limitCone (F : J ⥤ α) : LimitCone F
     where
   Cone :=
-    { pt := infᵢ F.obj
+    { pt := iInf F.obj
       π := { app := fun j => homOfLE (CompleteLattice.inf_le _ _ (Set.mem_range_self _)) } }
   IsLimit :=
     {
@@ -271,7 +271,7 @@ def limitCone (F : J ⥤ α) : LimitCone F
 def colimitCocone (F : J ⥤ α) : ColimitCocone F
     where
   Cocone :=
-    { pt := supᵢ F.obj
+    { pt := iSup F.obj
       ι := { app := fun j => homOfLE (CompleteLattice.le_sup _ _ (Set.mem_range_self _)) } }
   IsColimit :=
     {
@@ -296,29 +296,29 @@ instance (priority := 100) hasColimits_of_completeLattice : HasColimits α
 #align category_theory.limits.complete_lattice.has_colimits_of_complete_lattice CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice
 -/
 
-/- warning: category_theory.limits.complete_lattice.limit_eq_infi -> CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢ is a dubious translation:
+/- warning: category_theory.limits.complete_lattice.limit_eq_infi -> CategoryTheory.Limits.CompleteLattice.limit_eq_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInfₓ'. -/
 /-- The limit of a functor into a complete lattice is the infimum of the objects in the image.
 -/
-theorem limit_eq_infᵢ (F : J ⥤ α) : limit F = infᵢ F.obj :=
+theorem limit_eq_iInf (F : J ⥤ α) : limit F = iInf F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (limitCone F).IsLimit).to_eq
-#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢ
+#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInf
 
-/- warning: category_theory.limits.complete_lattice.colimit_eq_supr -> CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢ is a dubious translation:
+/- warning: category_theory.limits.complete_lattice.colimit_eq_supr -> CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_iSupₓ'. -/
 /-- The colimit of a functor into a complete lattice is the supremum of the objects in the image.
 -/
-theorem colimit_eq_supᵢ (F : J ⥤ α) : colimit F = supᵢ F.obj :=
+theorem colimit_eq_iSup (F : J ⥤ α) : colimit F = iSup F.obj :=
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (colimitCocone F).IsColimit).to_eq
-#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢ
+#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup
 
 end CategoryTheory.Limits.CompleteLattice
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Justus Springer
 
 ! This file was ported from Lean 3 source module category_theory.limits.lattice
-! leanprover-community/mathlib commit c3019c79074b0619edb4b27553a91b2e82242395
+! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -17,6 +17,9 @@ import Mathbin.CategoryTheory.Limits.Shapes.FiniteLimits
 
 /-!
 # Limits in lattice categories are given by infimums and supremums.
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
 -/
 
 
Diff
@@ -34,6 +34,7 @@ variable {α : Type u}
 
 variable {J : Type w} [SmallCategory J] [FinCategory J]
 
+#print CategoryTheory.Limits.CompleteLattice.finiteLimitCone /-
 /-- The limit cone over any functor from a finite diagram into a `semilattice_inf` with `order_top`.
 -/
 def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone F
@@ -43,7 +44,9 @@ def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone
       π := { app := fun j => homOfLE (Finset.inf_le (Fintype.complete _)) } }
   IsLimit := { lift := fun s => homOfLE (Finset.le_inf fun j _ => (s.π.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitCone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.finiteColimitCocone /-
 /--
 The colimit cocone over any functor from a finite diagram into a `semilattice_sup` with `order_bot`.
 -/
@@ -54,19 +57,30 @@ def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : Colim
       ι := { app := fun i => homOfLE (Finset.le_sup (Fintype.complete _)) } }
   IsColimit := { desc := fun s => homOfLE (Finset.sup_le fun j _ => (s.ι.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop /-
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteLimits_of_semilatticeInf_orderTop [SemilatticeInf α]
     [OrderTop α] : HasFiniteLimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasLimit := fun F => has_limit.mk (finite_limit_cone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot /-
 -- see Note [lower instance priority]
 instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [SemilatticeSup α]
     [OrderBot α] : HasFiniteColimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasColimit := fun F => has_colimit.mk (finite_colimit_cocone F) }⟩
 #align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
+-/
 
+/- warning: category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf -> CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F))
+but is expected to have type
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeInf.{u2} α] [_inst_4 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.limit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u2} α _inst_3 _inst_4)) F)) (Finset.inf.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α _inst_3))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_infₓ'. -/
 /-- The limit of a functor from a finite diagram into a `semilattice_inf` with `order_top` is the
 infimum of the objects in the image.
 -/
@@ -75,6 +89,12 @@ theorem finite_limit_eq_finset_univ_inf [SemilatticeInf α] [OrderTop α] (F : J
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (finiteLimitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.finite_limit_eq_finset_univ_inf CategoryTheory.Limits.CompleteLattice.finite_limit_eq_finset_univ_inf
 
+/- warning: category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup -> CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F))
+but is expected to have type
+  forall {α : Type.{u2}} {J : Type.{u1}} [_inst_1 : CategoryTheory.SmallCategory.{u1} J] [_inst_2 : CategoryTheory.FinCategory.{u1} J _inst_1] [_inst_3 : SemilatticeSup.{u2} α] [_inst_4 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))] (F : CategoryTheory.Functor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3)))), Eq.{succ u2} α (CategoryTheory.Limits.colimit.{u1, u1, u2, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{u1, u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) J _inst_1 _inst_2 (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u2} α _inst_3 _inst_4)) F)) (Finset.sup.{u2, u1} α J _inst_3 _inst_4 (Finset.univ.{u1} J (CategoryTheory.FinCategory.fintypeObj.{u1} J _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u1, u2} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_1)) α (CategoryTheory.CategoryStruct.toQuiver.{u2, u2} α (CategoryTheory.Category.toCategoryStruct.{u2, u2} α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))))) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u1, u2} J _inst_1 α (Preorder.smallCategory.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeSup.toPartialOrder.{u2} α _inst_3))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_supₓ'. -/
 /-- The colimit of a functor from a finite diagram into a `semilattice_sup` with `order_bot`
 is the supremum of the objects in the image.
 -/
@@ -83,6 +103,7 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (finiteColimitCocone F).IsColimit).to_eq
 #align category_theory.limits.complete_lattice.finite_colimit_eq_finset_univ_sup CategoryTheory.Limits.CompleteLattice.finite_colimit_eq_finset_univ_sup
 
+#print CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf /-
 /--
 A finite product in the category of a `semilattice_inf` with `order_top` is the same as the infimum.
 -/
@@ -97,7 +118,9 @@ theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Typ
   simp only [← Finset.inf_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_product_eq_finset_inf CategoryTheory.Limits.CompleteLattice.finite_product_eq_finset_inf
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup /-
 /-- A finite coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -112,6 +135,7 @@ theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : T
   simp only [← Finset.sup_map, Finset.univ_map_equiv_to_embedding]
   rfl
 #align category_theory.limits.complete_lattice.finite_coproduct_eq_finset_sup CategoryTheory.Limits.CompleteLattice.finite_coproduct_eq_finset_sup
+-/
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts α :=
@@ -122,6 +146,12 @@ instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts
     infer_instance
   apply has_binary_products_of_has_limit_pair
 
+/- warning: category_theory.limits.complete_lattice.prod_eq_inf -> CategoryTheory.Limits.CompleteLattice.prod_eq_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryProducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.prod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryProductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.prod_eq_inf CategoryTheory.Limits.CompleteLattice.prod_eq_infₓ'. -/
 /-- The binary product in the category of a `semilattice_inf` with `order_top` is the same as the
 infimum.
 -/
@@ -147,6 +177,12 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
     infer_instance
   apply has_binary_coproducts_of_has_colimit_pair
 
+/- warning: category_theory.limits.complete_lattice.coprod_eq_sup -> CategoryTheory.Limits.CompleteLattice.coprod_eq_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.CategoryTheory.Limits.hasBinaryCoproducts.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α), Eq.{succ u1} α (CategoryTheory.Limits.coprod.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.CompleteLattice.instHasBinaryCoproductsSmallCategoryToPreorderToPartialOrder.{u1} α _inst_3 _inst_4) (CategoryTheory.Limits.pair.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) x y))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_supₓ'. -/
 /-- The binary coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
 supremum.
 -/
@@ -163,6 +199,12 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
     
 #align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
 
+/- warning: category_theory.limits.complete_lattice.pullback_eq_inf -> CategoryTheory.Limits.CompleteLattice.pullback_eq_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_3) x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeInf.{u1} α] [_inst_4 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3)))] {x : α} {y : α} {z : α} (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) x z) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))))) y z), Eq.{succ u1} α (CategoryTheory.Limits.pullback.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePullback.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.cospan.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_3))) x y z f g))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_3) x y)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_infₓ'. -/
 /-- The pullback in the category of a `semilattice_inf` with `order_top` is the same as the infimum
 over the objects.
 -/
@@ -178,6 +220,12 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
     
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
 
+/- warning: category_theory.limits.complete_lattice.pushout_eq_sup -> CategoryTheory.Limits.CompleteLattice.pushout_eq_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_3) x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : SemilatticeSup.{u1} α] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3)))] (x : α) (y : α) (z : α) (f : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z x) (g : Quiver.Hom.{succ u1, u1} α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))))) z y), Eq.{succ u1} α (CategoryTheory.Limits.pushout.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits.{0, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.finCategoryWidePushout.{0} CategoryTheory.Limits.WalkingPair CategoryTheory.Limits.fintypeWalkingPair) (CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot.{u1} α _inst_3 _inst_4)) (CategoryTheory.Limits.span.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_3))) z x y f g))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_3) x y)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_supₓ'. -/
 /-- The pushout in the category of a `semilattice_sup` with `order_bot` is the same as the supremum
 over the objects.
 -/
@@ -199,6 +247,7 @@ variable {α : Type u} [CompleteLattice α]
 
 variable {J : Type u} [SmallCategory J]
 
+#print CategoryTheory.Limits.CompleteLattice.limitCone /-
 /-- The limit cone over any functor into a complete lattice.
 -/
 def limitCone (F : J ⥤ α) : LimitCone F
@@ -211,7 +260,9 @@ def limitCone (F : J ⥤ α) : LimitCone F
       lift := fun s =>
         homOfLE (CompleteLattice.le_inf _ _ (by rintro _ ⟨j, rfl⟩; exact (s.π.app j).le)) }
 #align category_theory.limits.complete_lattice.limit_cone CategoryTheory.Limits.CompleteLattice.limitCone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.colimitCocone /-
 /-- The colimit cocone over any functor into a complete lattice.
 -/
 def colimitCocone (F : J ⥤ α) : ColimitCocone F
@@ -224,25 +275,42 @@ def colimitCocone (F : J ⥤ α) : ColimitCocone F
       desc := fun s =>
         homOfLE (CompleteLattice.sup_le _ _ (by rintro _ ⟨j, rfl⟩; exact (s.ι.app j).le)) }
 #align category_theory.limits.complete_lattice.colimit_cocone CategoryTheory.Limits.CompleteLattice.colimitCocone
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice /-
 -- It would be nice to only use the `Inf` half of the complete lattice, but
 -- this seems not to have been described separately.
 -- see Note [lower instance priority]
 instance (priority := 100) hasLimits_of_completeLattice : HasLimits α
     where HasLimitsOfShape J 𝒥 := { HasLimit := fun F => has_limit.mk (limit_cone F) }
 #align category_theory.limits.complete_lattice.has_limits_of_complete_lattice CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice
+-/
 
+#print CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice /-
 -- see Note [lower instance priority]
 instance (priority := 100) hasColimits_of_completeLattice : HasColimits α
     where HasColimitsOfShape J 𝒥 := { HasColimit := fun F => has_colimit.mk (colimit_cocone F) }
 #align category_theory.limits.complete_lattice.has_colimits_of_complete_lattice CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice
+-/
 
+/- warning: category_theory.limits.complete_lattice.limit_eq_infi -> CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.limit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasLimitOfHasLimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasLimits_of_completeLattice.{u1} α _inst_1)) F)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢₓ'. -/
 /-- The limit of a functor into a complete lattice is the infimum of the objects in the image.
 -/
 theorem limit_eq_infᵢ (F : J ⥤ α) : limit F = infᵢ F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (limitCone F).IsLimit).to_eq
 #align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢ
 
+/- warning: category_theory.limits.complete_lattice.colimit_eq_supr -> CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) J (CategoryTheory.Functor.obj.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {J : Type.{u1}} [_inst_2 : CategoryTheory.SmallCategory.{u1} J] (F : CategoryTheory.Functor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))), Eq.{succ u1} α (CategoryTheory.Limits.colimit.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize.{u1, u1, u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) J _inst_2 (CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice.{u1} α _inst_1)) F)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) J (Prefunctor.obj.{succ u1, succ u1, u1, u1} J (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} J (CategoryTheory.Category.toCategoryStruct.{u1, u1} J _inst_2)) α (CategoryTheory.CategoryStruct.toQuiver.{u1, u1} α (CategoryTheory.Category.toCategoryStruct.{u1, u1} α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u1, u1} J _inst_2 α (Preorder.smallCategory.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢₓ'. -/
 /-- The colimit of a functor into a complete lattice is the supremum of the objects in the image.
 -/
 theorem colimit_eq_supᵢ (F : J ⥤ α) : colimit F = supᵢ F.obj :=
Diff
@@ -39,7 +39,7 @@ variable {J : Type w} [SmallCategory J] [FinCategory J]
 def finiteLimitCone [SemilatticeInf α] [OrderTop α] (F : J ⥤ α) : LimitCone F
     where
   Cone :=
-    { x := Finset.univ.inf F.obj
+    { pt := Finset.univ.inf F.obj
       π := { app := fun j => homOfLE (Finset.inf_le (Fintype.complete _)) } }
   IsLimit := { lift := fun s => homOfLE (Finset.le_inf fun j _ => (s.π.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_limit_cone CategoryTheory.Limits.CompleteLattice.finiteLimitCone
@@ -50,7 +50,7 @@ The colimit cocone over any functor from a finite diagram into a `semilattice_su
 def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : ColimitCocone F
     where
   Cocone :=
-    { x := Finset.univ.sup F.obj
+    { pt := Finset.univ.sup F.obj
       ι := { app := fun i => homOfLE (Finset.le_sup (Fintype.complete _)) } }
   IsColimit := { desc := fun s => homOfLE (Finset.sup_le fun j _ => (s.ι.app j).down.down) }
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
@@ -204,7 +204,7 @@ variable {J : Type u} [SmallCategory J]
 def limitCone (F : J ⥤ α) : LimitCone F
     where
   Cone :=
-    { x := infᵢ F.obj
+    { pt := infᵢ F.obj
       π := { app := fun j => homOfLE (CompleteLattice.inf_le _ _ (Set.mem_range_self _)) } }
   IsLimit :=
     {
@@ -217,7 +217,7 @@ def limitCone (F : J ⥤ α) : LimitCone F
 def colimitCocone (F : J ⥤ α) : ColimitCocone F
     where
   Cocone :=
-    { x := supᵢ F.obj
+    { pt := supᵢ F.obj
       ι := { app := fun j => homOfLE (CompleteLattice.le_sup _ _ (Set.mem_range_self _)) } }
   IsColimit :=
     {
Diff
@@ -56,16 +56,16 @@ def finiteColimitCocone [SemilatticeSup α] [OrderBot α] (F : J ⥤ α) : Colim
 #align category_theory.limits.complete_lattice.finite_colimit_cocone CategoryTheory.Limits.CompleteLattice.finiteColimitCocone
 
 -- see Note [lower instance priority]
-instance (priority := 100) hasFiniteLimitsOfSemilatticeInfOrderTop [SemilatticeInf α] [OrderTop α] :
-    HasFiniteLimits α :=
+instance (priority := 100) hasFiniteLimits_of_semilatticeInf_orderTop [SemilatticeInf α]
+    [OrderTop α] : HasFiniteLimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasLimit := fun F => has_limit.mk (finite_limit_cone F) }⟩
-#align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimitsOfSemilatticeInfOrderTop
+#align category_theory.limits.complete_lattice.has_finite_limits_of_semilattice_inf_order_top CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
 
 -- see Note [lower instance priority]
-instance (priority := 100) hasFiniteColimitsOfSemilatticeSupOrderBot [SemilatticeSup α]
+instance (priority := 100) hasFiniteColimits_of_semilatticeSup_orderBot [SemilatticeSup α]
     [OrderBot α] : HasFiniteColimits α :=
   ⟨fun J 𝒥₁ 𝒥₂ => { HasColimit := fun F => has_colimit.mk (finite_colimit_cocone F) }⟩
-#align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimitsOfSemilatticeSupOrderBot
+#align category_theory.limits.complete_lattice.has_finite_colimits_of_semilattice_sup_order_bot CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
 
 /-- The limit of a functor from a finite diagram into a `semilattice_inf` with `order_top` is the
 infimum of the objects in the image.
@@ -118,7 +118,7 @@ instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts
   by
   have : ∀ x y : α, has_limit (pair x y) :=
     by
-    letI := hasFiniteLimitsOfHasFiniteLimitsOfSize.{u} α
+    letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α
     infer_instance
   apply has_binary_products_of_has_limit_pair
 
@@ -143,7 +143,7 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
   by
   have : ∀ x y : α, has_colimit (pair x y) :=
     by
-    letI := hasFiniteColimitsOfHasFiniteColimitsOfSize.{u} α
+    letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α
     infer_instance
   apply has_binary_coproducts_of_has_colimit_pair
 

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -85,9 +85,9 @@ A finite product in the category of a `SemilatticeInf` with `OrderTop` is the sa
 theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Type u} [Fintype ι]
     (f : ι → α) : ∏ f = Fintype.elems.inf f := by
   trans
-  exact
-    (IsLimit.conePointUniqueUpToIso (limit.isLimit _)
-        (finiteLimitCone (Discrete.functor f)).isLimit).to_eq
+  · exact
+      (IsLimit.conePointUniqueUpToIso (limit.isLimit _)
+          (finiteLimitCone (Discrete.functor f)).isLimit).to_eq
   change Finset.univ.inf (f ∘ discreteEquiv.toEmbedding) = Fintype.elems.inf f
   simp only [← Finset.inf_map, Finset.univ_map_equiv_to_embedding]
   rfl
@@ -99,9 +99,9 @@ supremum.
 theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : Type u} [Fintype ι]
     (f : ι → α) : ∐ f = Fintype.elems.sup f := by
   trans
-  exact
-    (IsColimit.coconePointUniqueUpToIso (colimit.isColimit _)
-        (finiteColimitCocone (Discrete.functor f)).isColimit).to_eq
+  · exact
+      (IsColimit.coconePointUniqueUpToIso (colimit.isColimit _)
+          (finiteColimitCocone (Discrete.functor f)).isColimit).to_eq
   change Finset.univ.sup (f ∘ discreteEquiv.toEmbedding) = Fintype.elems.sup f
   simp only [← Finset.sup_map, Finset.univ_map_equiv_to_embedding]
   rfl
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -28,7 +28,6 @@ namespace CategoryTheory.Limits.CompleteLattice
 section Semilattice
 
 variable {α : Type u}
-
 variable {J : Type w} [SmallCategory J] [FinCategory J]
 
 /-- The limit cone over any functor from a finite diagram into a `SemilatticeInf` with `OrderTop`.
@@ -179,7 +178,6 @@ theorem pushout_eq_sup [SemilatticeSup α] [OrderBot α] (x y z : α) (f : z ⟶
 end Semilattice
 
 variable {α : Type u} [CompleteLattice α]
-
 variable {J : Type u} [SmallCategory J]
 
 /-- The limit cone over any functor into a complete lattice.
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Justus Springer
 -/
 import Mathlib.Order.CompleteLattice
-import Mathlib.Data.Fintype.Lattice
+import Mathlib.Data.Finset.Lattice
 import Mathlib.CategoryTheory.Limits.Shapes.Pullbacks
 import Mathlib.CategoryTheory.Category.Preorder
 import Mathlib.CategoryTheory.Limits.Shapes.Products
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2019 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Justus Springer
-
-! This file was ported from Lean 3 source module category_theory.limits.lattice
-! leanprover-community/mathlib commit c3019c79074b0619edb4b27553a91b2e82242395
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.CompleteLattice
 import Mathlib.Data.Fintype.Lattice
@@ -15,6 +10,8 @@ import Mathlib.CategoryTheory.Category.Preorder
 import Mathlib.CategoryTheory.Limits.Shapes.Products
 import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits
 
+#align_import category_theory.limits.lattice from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395"
+
 /-!
 # Limits in lattice categories are given by infimums and supremums.
 -/
fix: piObj / sigmaObj precedence (#5618)
Diff
@@ -87,7 +87,7 @@ theorem finite_colimit_eq_finset_univ_sup [SemilatticeSup α] [OrderBot α] (F :
 A finite product in the category of a `SemilatticeInf` with `OrderTop` is the same as the infimum.
 -/
 theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Type u} [Fintype ι]
-    (f : ι → α) : (∏ f) = Fintype.elems.inf f := by
+    (f : ι → α) : ∏ f = Fintype.elems.inf f := by
   trans
   exact
     (IsLimit.conePointUniqueUpToIso (limit.isLimit _)
@@ -101,7 +101,7 @@ theorem finite_product_eq_finset_inf [SemilatticeInf α] [OrderTop α] {ι : Typ
 supremum.
 -/
 theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : Type u} [Fintype ι]
-    (f : ι → α) : (∐ f) = Fintype.elems.sup f := by
+    (f : ι → α) : ∐ f = Fintype.elems.sup f := by
   trans
   exact
     (IsColimit.coconePointUniqueUpToIso (colimit.isColimit _)
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -189,22 +189,22 @@ variable {J : Type u} [SmallCategory J]
 -/
 def limitCone (F : J ⥤ α) : LimitCone F where
   cone :=
-    { pt := infᵢ F.obj
-      π := { app := fun j => homOfLE (CompleteLattice.infₛ_le _ _ (Set.mem_range_self _)) } }
+    { pt := iInf F.obj
+      π := { app := fun j => homOfLE (CompleteLattice.sInf_le _ _ (Set.mem_range_self _)) } }
   isLimit :=
     { lift := fun s =>
-        homOfLE (CompleteLattice.le_infₛ _ _ (by rintro _ ⟨j, rfl⟩; exact (s.π.app j).le)) }
+        homOfLE (CompleteLattice.le_sInf _ _ (by rintro _ ⟨j, rfl⟩; exact (s.π.app j).le)) }
 #align category_theory.limits.complete_lattice.limit_cone CategoryTheory.Limits.CompleteLattice.limitCone
 
 /-- The colimit cocone over any functor into a complete lattice.
 -/
 def colimitCocone (F : J ⥤ α) : ColimitCocone F where
   cocone :=
-    { pt := supᵢ F.obj
-      ι := { app := fun j => homOfLE (CompleteLattice.le_supₛ _ _ (Set.mem_range_self _)) } }
+    { pt := iSup F.obj
+      ι := { app := fun j => homOfLE (CompleteLattice.le_sSup _ _ (Set.mem_range_self _)) } }
   isColimit :=
     { desc := fun s =>
-        homOfLE (CompleteLattice.supₛ_le _ _ (by rintro _ ⟨j, rfl⟩; exact (s.ι.app j).le)) }
+        homOfLE (CompleteLattice.sSup_le _ _ (by rintro _ ⟨j, rfl⟩; exact (s.ι.app j).le)) }
 #align category_theory.limits.complete_lattice.colimit_cocone CategoryTheory.Limits.CompleteLattice.colimitCocone
 
 -- It would be nice to only use the `Inf` half of the complete lattice, but
@@ -221,14 +221,14 @@ instance (priority := 100) hasColimits_of_completeLattice : HasColimits α where
 
 /-- The limit of a functor into a complete lattice is the infimum of the objects in the image.
 -/
-theorem limit_eq_infᵢ (F : J ⥤ α) : limit F = infᵢ F.obj :=
+theorem limit_eq_iInf (F : J ⥤ α) : limit F = iInf F.obj :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit F) (limitCone F).isLimit).to_eq
-#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_infᵢ
+#align category_theory.limits.complete_lattice.limit_eq_infi CategoryTheory.Limits.CompleteLattice.limit_eq_iInf
 
 /-- The colimit of a functor into a complete lattice is the supremum of the objects in the image.
 -/
-theorem colimit_eq_supᵢ (F : J ⥤ α) : colimit F = supᵢ F.obj :=
+theorem colimit_eq_iSup (F : J ⥤ α) : colimit F = iSup F.obj :=
   (IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (colimitCocone F).isColimit).to_eq
-#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_supᵢ
+#align category_theory.limits.complete_lattice.colimit_eq_supr CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup
 
 end CategoryTheory.Limits.CompleteLattice
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -113,8 +113,7 @@ theorem finite_coproduct_eq_finset_sup [SemilatticeSup α] [OrderBot α] {ι : T
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeInf α] [OrderTop α] : HasBinaryProducts α := by
-  have : ∀ x y : α, HasLimit (pair x y) :=
-    by
+  have : ∀ x y : α, HasLimit (pair x y) := by
     letI := hasFiniteLimits_of_hasFiniteLimits_of_size.{u} α
     infer_instance
   apply hasBinaryProducts_of_hasLimit_pair
@@ -134,8 +133,7 @@ theorem prod_eq_inf [SemilatticeInf α] [OrderTop α] (x y : α) : Limits.prod x
 
 -- see Note [lower instance priority]
 instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproducts α := by
-  have : ∀ x y : α, HasColimit (pair x y) :=
-    by
+  have : ∀ x y : α, HasColimit (pair x y) := by
     letI := hasFiniteColimits_of_hasFiniteColimits_of_size.{u} α
     infer_instance
   apply hasBinaryCoproducts_of_hasColimit_pair
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -165,7 +165,6 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
     _ = z ⊓ (x ⊓ (y ⊓ ⊤)) := rfl
     _ = z ⊓ (x ⊓ y) := by rw [inf_top_eq]
     _ = x ⊓ y := inf_eq_right.mpr (inf_le_of_left_le f.le)
-
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
 
 /-- The pushout in the category of a `SemilatticeSup` with `OrderBot` is the same as the supremum
@@ -180,7 +179,6 @@ theorem pushout_eq_sup [SemilatticeSup α] [OrderBot α] (x y z : α) (f : z ⟶
     _ = z ⊔ (x ⊔ (y ⊔ ⊥)) := rfl
     _ = z ⊔ (x ⊔ y) := by rw [sup_bot_eq]
     _ = x ⊔ y := sup_eq_right.mpr (le_sup_of_le_left f.le)
-
 #align category_theory.limits.complete_lattice.pushout_eq_sup CategoryTheory.Limits.CompleteLattice.pushout_eq_sup
 
 end Semilattice
chore: tidy various files (#3358)
Diff
@@ -140,7 +140,7 @@ instance (priority := 100) [SemilatticeSup α] [OrderBot α] : HasBinaryCoproduc
     infer_instance
   apply hasBinaryCoproducts_of_hasColimit_pair
 
-/-- The binary coproduct in the category of a `semilattice_sup` with `order_bot` is the same as the
+/-- The binary coproduct in the category of a `SemilatticeSup` with `OrderBot` is the same as the
 supremum.
 -/
 @[simp]
@@ -149,11 +149,11 @@ theorem coprod_eq_sup [SemilatticeSup α] [OrderBot α] (x y : α) : Limits.copr
     Limits.coprod x y = colimit (pair x y) := rfl
     _ = Finset.univ.sup (pair x y).obj := by rw [finite_colimit_eq_finset_univ_sup (pair x y)]
     _ = x ⊔ (y ⊔ ⊥) := rfl
-    -- Note: finset.sup is realized as a fold, hence the definitional equality
+    -- Note: Finset.sup is realized as a fold, hence the definitional equality
     _ = x ⊔ y := by rw [sup_bot_eq]
 #align category_theory.limits.complete_lattice.coprod_eq_sup CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
 
-/-- The pullback in the category of a `semilattice_inf` with `order_top` is the same as the infimum
+/-- The pullback in the category of a `SemilatticeInf` with `OrderTop` is the same as the infimum
 over the objects.
 -/
 @[simp]
@@ -168,7 +168,7 @@ theorem pullback_eq_inf [SemilatticeInf α] [OrderTop α] {x y z : α} (f : x 
 
 #align category_theory.limits.complete_lattice.pullback_eq_inf CategoryTheory.Limits.CompleteLattice.pullback_eq_inf
 
-/-- The pushout in the category of a `semilattice_sup` with `order_bot` is the same as the supremum
+/-- The pushout in the category of a `SemilatticeSup` with `OrderBot` is the same as the supremum
 over the objects.
 -/
 @[simp]
feat: port CategoryTheory.Limits.Lattice (#2787)

Dependencies 2 + 248

249 files ported (99.2%)
102786 lines ported (99.9%)
Show graph

The unported dependencies are