category_theory.limits.preserves.shapes.binary_productsMathlib.CategoryTheory.Limits.Preserves.Shapes.BinaryProducts

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 -/
-import Mathbin.CategoryTheory.Limits.Shapes.BinaryProducts
-import Mathbin.CategoryTheory.Limits.Preserves.Basic
+import CategoryTheory.Limits.Shapes.BinaryProducts
+import CategoryTheory.Limits.Preserves.Basic
 
 #align_import category_theory.limits.preserves.shapes.binary_products from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
-
-! This file was ported from Lean 3 source module category_theory.limits.preserves.shapes.binary_products
-! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Limits.Shapes.BinaryProducts
 import Mathbin.CategoryTheory.Limits.Preserves.Basic
 
+#align_import category_theory.limits.preserves.shapes.binary_products from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
+
 /-!
 # Preserving binary products
 
Diff
@@ -43,6 +43,7 @@ section
 
 variable {P X Y Z : C} (f : P ⟶ X) (g : P ⟶ Y)
 
+#print CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv /-
 /--
 The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This
 essentially lets us commute `binary_fan.mk` with `functor.map_cone`.
@@ -52,21 +53,27 @@ def isLimitMapConeBinaryFanEquiv :
   (IsLimit.postcomposeHomEquiv (diagramIsoPair _) _).symm.trans
     (IsLimit.equivIsoLimit (Cones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv
+-/
 
+#print CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit /-
 /-- The property of preserving products expressed in terms of binary fans. -/
 def mapIsLimitOfPreservesOfIsLimit [PreservesLimit (pair X Y) G] (l : IsLimit (BinaryFan.mk f g)) :
     IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
   isLimitMapConeBinaryFanEquiv G f g (PreservesLimit.preserves l)
 #align category_theory.limits.map_is_limit_of_preserves_of_is_limit CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit
+-/
 
+#print CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimit /-
 /-- The property of reflecting products expressed in terms of binary fans. -/
 def isLimitOfReflectsOfMapIsLimit [ReflectsLimit (pair X Y) G]
     (l : IsLimit (BinaryFan.mk (G.map f) (G.map g))) : IsLimit (BinaryFan.mk f g) :=
   ReflectsLimit.reflects ((isLimitMapConeBinaryFanEquiv G f g).symm l)
 #align category_theory.limits.is_limit_of_reflects_of_map_is_limit CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimit
+-/
 
 variable (X Y) [HasBinaryProduct X Y]
 
+#print CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimit /-
 /-- If `G` preserves binary products and `C` has them, then the binary fan constructed of the mapped
 morphisms of the binary product cone is a limit.
 -/
@@ -74,9 +81,11 @@ def isLimitOfHasBinaryProductOfPreservesLimit [PreservesLimit (pair X Y) G] :
     IsLimit (BinaryFan.mk (G.map (Limits.prod.fst : X ⨯ Y ⟶ X)) (G.map Limits.prod.snd)) :=
   mapIsLimitOfPreservesOfIsLimit G _ _ (prodIsProd X Y)
 #align category_theory.limits.is_limit_of_has_binary_product_of_preserves_limit CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimit
+-/
 
 variable [HasBinaryProduct (G.obj X) (G.obj Y)]
 
+#print CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparison /-
 /-- If the product comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -88,20 +97,25 @@ def PreservesLimitPair.ofIsoProdComparison [i : IsIso (prodComparison G X Y)] :
   apply is_limit.of_point_iso (limit.is_limit (pair (G.obj X) (G.obj Y)))
   apply i
 #align category_theory.limits.preserves_limit_pair.of_iso_prod_comparison CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparison
+-/
 
 variable [PreservesLimit (pair X Y) G]
 
+#print CategoryTheory.Limits.PreservesLimitPair.iso /-
 /-- If `G` preserves the product of `(X,Y)`, then the product comparison map for `G` at `(X,Y)` is
 an isomorphism.
 -/
 def PreservesLimitPair.iso : G.obj (X ⨯ Y) ≅ G.obj X ⨯ G.obj Y :=
   IsLimit.conePointUniqueUpToIso (isLimitOfHasBinaryProductOfPreservesLimit G X Y) (limit.isLimit _)
 #align category_theory.limits.preserves_limit_pair.iso CategoryTheory.Limits.PreservesLimitPair.iso
+-/
 
+#print CategoryTheory.Limits.PreservesLimitPair.iso_hom /-
 @[simp]
 theorem PreservesLimitPair.iso_hom : (PreservesLimitPair.iso G X Y).Hom = prodComparison G X Y :=
   rfl
 #align category_theory.limits.preserves_limit_pair.iso_hom CategoryTheory.Limits.PreservesLimitPair.iso_hom
+-/
 
 instance : IsIso (prodComparison G X Y) :=
   by
@@ -114,6 +128,7 @@ section
 
 variable {P X Y Z : C} (f : X ⟶ P) (g : Y ⟶ P)
 
+#print CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv /-
 /-- The map of a binary cofan is a colimit iff
 the cofork consisting of the mapped morphisms is a colimit.
 This essentially lets us commute `binary_cofan.mk` with `functor.map_cocone`.
@@ -123,21 +138,27 @@ def isColimitMapCoconeBinaryCofanEquiv :
   (IsColimit.precomposeHomEquiv (diagramIsoPair _).symm _).symm.trans
     (IsColimit.equivIsoColimit (Cocones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv
+-/
 
+#print CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit /-
 /-- The property of preserving coproducts expressed in terms of binary cofans. -/
 def mapIsColimitOfPreservesOfIsColimit [PreservesColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk f g)) : IsColimit (BinaryCofan.mk (G.map f) (G.map g)) :=
   isColimitMapCoconeBinaryCofanEquiv G f g (PreservesColimit.preserves l)
 #align category_theory.limits.map_is_colimit_of_preserves_of_is_colimit CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit
+-/
 
+#print CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimit /-
 /-- The property of reflecting coproducts expressed in terms of binary cofans. -/
 def isColimitOfReflectsOfMapIsColimit [ReflectsColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk (G.map f) (G.map g))) : IsColimit (BinaryCofan.mk f g) :=
   ReflectsColimit.reflects ((isColimitMapCoconeBinaryCofanEquiv G f g).symm l)
 #align category_theory.limits.is_colimit_of_reflects_of_map_is_colimit CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimit
+-/
 
 variable (X Y) [HasBinaryCoproduct X Y]
 
+#print CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimit /-
 /--
 If `G` preserves binary coproducts and `C` has them, then the binary cofan constructed of the mapped
 morphisms of the binary product cocone is a colimit.
@@ -146,9 +167,11 @@ def isColimitOfHasBinaryCoproductOfPreservesColimit [PreservesColimit (pair X Y)
     IsColimit (BinaryCofan.mk (G.map (Limits.coprod.inl : X ⟶ X ⨿ Y)) (G.map Limits.coprod.inr)) :=
   mapIsColimitOfPreservesOfIsColimit G _ _ (coprodIsCoprod X Y)
 #align category_theory.limits.is_colimit_of_has_binary_coproduct_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimit
+-/
 
 variable [HasBinaryCoproduct (G.obj X) (G.obj Y)]
 
+#print CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparison /-
 /-- If the coproduct comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -160,9 +183,11 @@ def PreservesColimitPair.ofIsoCoprodComparison [i : IsIso (coprodComparison G X
   apply is_colimit.of_point_iso (colimit.is_colimit (pair (G.obj X) (G.obj Y)))
   apply i
 #align category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparison
+-/
 
 variable [PreservesColimit (pair X Y) G]
 
+#print CategoryTheory.Limits.PreservesColimitPair.iso /-
 /--
 If `G` preserves the coproduct of `(X,Y)`, then the coproduct comparison map for `G` at `(X,Y)` is
 an isomorphism.
@@ -171,12 +196,15 @@ def PreservesColimitPair.iso : G.obj X ⨿ G.obj Y ≅ G.obj (X ⨿ Y) :=
   IsColimit.coconePointUniqueUpToIso (colimit.isColimit _)
     (isColimitOfHasBinaryCoproductOfPreservesColimit G X Y)
 #align category_theory.limits.preserves_colimit_pair.iso CategoryTheory.Limits.PreservesColimitPair.iso
+-/
 
+#print CategoryTheory.Limits.PreservesColimitPair.iso_hom /-
 @[simp]
 theorem PreservesColimitPair.iso_hom :
     (PreservesColimitPair.iso G X Y).Hom = coprodComparison G X Y :=
   rfl
 #align category_theory.limits.preserves_colimit_pair.iso_hom CategoryTheory.Limits.PreservesColimitPair.iso_hom
+-/
 
 instance : IsIso (coprodComparison G X Y) :=
   by
Diff
@@ -43,12 +43,6 @@ section
 
 variable {P X Y Z : C} (f : P ⟶ X) (g : P ⟶ Y)
 
-/- warning: category_theory.limits.is_limit_map_cone_binary_fan_equiv -> CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 G (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquivₓ'. -/
 /--
 The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This
 essentially lets us commute `binary_fan.mk` with `functor.map_cone`.
@@ -59,24 +53,12 @@ def isLimitMapConeBinaryFanEquiv :
     (IsLimit.equivIsoLimit (Cones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv
 
-/- warning: category_theory.limits.map_is_limit_of_preserves_of_is_limit -> CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_is_limit_of_preserves_of_is_limit CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimitₓ'. -/
 /-- The property of preserving products expressed in terms of binary fans. -/
 def mapIsLimitOfPreservesOfIsLimit [PreservesLimit (pair X Y) G] (l : IsLimit (BinaryFan.mk f g)) :
     IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
   isLimitMapConeBinaryFanEquiv G f g (PreservesLimit.preserves l)
 #align category_theory.limits.map_is_limit_of_preserves_of_is_limit CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit
 
-/- warning: category_theory.limits.is_limit_of_reflects_of_map_is_limit -> CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.ReflectsLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.ReflectsLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_of_reflects_of_map_is_limit CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimitₓ'. -/
 /-- The property of reflecting products expressed in terms of binary fans. -/
 def isLimitOfReflectsOfMapIsLimit [ReflectsLimit (pair X Y) G]
     (l : IsLimit (BinaryFan.mk (G.map f) (G.map g))) : IsLimit (BinaryFan.mk f g) :=
@@ -85,12 +67,6 @@ def isLimitOfReflectsOfMapIsLimit [ReflectsLimit (pair X Y) G]
 
 variable (X Y) [HasBinaryProduct X Y]
 
-/- warning: category_theory.limits.is_limit_of_has_binary_product_of_preserves_limit -> CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) X (CategoryTheory.Limits.prod.fst.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) Y (CategoryTheory.Limits.prod.snd.{u1, u3} C _inst_1 X Y _inst_3)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) X (CategoryTheory.Limits.prod.fst.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) Y (CategoryTheory.Limits.prod.snd.{u1, u3} C _inst_1 X Y _inst_3)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_of_has_binary_product_of_preserves_limit CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimitₓ'. -/
 /-- If `G` preserves binary products and `C` has them, then the binary fan constructed of the mapped
 morphisms of the binary product cone is a limit.
 -/
@@ -101,12 +77,6 @@ def isLimitOfHasBinaryProductOfPreservesLimit [PreservesLimit (pair X Y) G] :
 
 variable [HasBinaryProduct (G.obj X) (G.obj Y)]
 
-/- warning: category_theory.limits.preserves_limit_pair.of_iso_prod_comparison -> CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.of_iso_prod_comparison CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparisonₓ'. -/
 /-- If the product comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -121,12 +91,6 @@ def PreservesLimitPair.ofIsoProdComparison [i : IsIso (prodComparison G X Y)] :
 
 variable [PreservesLimit (pair X Y) G]
 
-/- warning: category_theory.limits.preserves_limit_pair.iso -> CategoryTheory.Limits.PreservesLimitPair.iso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4)
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.iso CategoryTheory.Limits.PreservesLimitPair.isoₓ'. -/
 /-- If `G` preserves the product of `(X,Y)`, then the product comparison map for `G` at `(X,Y)` is
 an isomorphism.
 -/
@@ -134,12 +98,6 @@ def PreservesLimitPair.iso : G.obj (X ⨯ Y) ≅ G.obj X ⨯ G.obj Y :=
   IsLimit.conePointUniqueUpToIso (isLimitOfHasBinaryProductOfPreservesLimit G X Y) (limit.isLimit _)
 #align category_theory.limits.preserves_limit_pair.iso CategoryTheory.Limits.PreservesLimitPair.iso
 
-/- warning: category_theory.limits.preserves_limit_pair.iso_hom -> CategoryTheory.Limits.PreservesLimitPair.iso_hom is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4)) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Limits.PreservesLimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4)) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (CategoryTheory.Limits.PreservesLimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.iso_hom CategoryTheory.Limits.PreservesLimitPair.iso_homₓ'. -/
 @[simp]
 theorem PreservesLimitPair.iso_hom : (PreservesLimitPair.iso G X Y).Hom = prodComparison G X Y :=
   rfl
@@ -156,12 +114,6 @@ section
 
 variable {P X Y Z : C} (f : X ⟶ P) (g : Y ⟶ P)
 
-/- warning: category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv -> CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 G (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquivₓ'. -/
 /-- The map of a binary cofan is a colimit iff
 the cofork consisting of the mapped morphisms is a colimit.
 This essentially lets us commute `binary_cofan.mk` with `functor.map_cocone`.
@@ -172,24 +124,12 @@ def isColimitMapCoconeBinaryCofanEquiv :
     (IsColimit.equivIsoColimit (Cocones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv
 
-/- warning: category_theory.limits.map_is_colimit_of_preserves_of_is_colimit -> CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_is_colimit_of_preserves_of_is_colimit CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimitₓ'. -/
 /-- The property of preserving coproducts expressed in terms of binary cofans. -/
 def mapIsColimitOfPreservesOfIsColimit [PreservesColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk f g)) : IsColimit (BinaryCofan.mk (G.map f) (G.map g)) :=
   isColimitMapCoconeBinaryCofanEquiv G f g (PreservesColimit.preserves l)
 #align category_theory.limits.map_is_colimit_of_preserves_of_is_colimit CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit
 
-/- warning: category_theory.limits.is_colimit_of_reflects_of_map_is_colimit -> CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.ReflectsColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.ReflectsColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_of_reflects_of_map_is_colimit CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimitₓ'. -/
 /-- The property of reflecting coproducts expressed in terms of binary cofans. -/
 def isColimitOfReflectsOfMapIsColimit [ReflectsColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk (G.map f) (G.map g))) : IsColimit (BinaryCofan.mk f g) :=
@@ -198,12 +138,6 @@ def isColimitOfReflectsOfMapIsColimit [ReflectsColimit (pair X Y) G]
 
 variable (X Y) [HasBinaryCoproduct X Y]
 
-/- warning: category_theory.limits.is_colimit_of_has_binary_coproduct_of_preserves_colimit -> CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inl.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inr.{u1, u3} C _inst_1 X Y _inst_3)))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inl.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inr.{u1, u3} C _inst_1 X Y _inst_3)))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_of_has_binary_coproduct_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimitₓ'. -/
 /--
 If `G` preserves binary coproducts and `C` has them, then the binary cofan constructed of the mapped
 morphisms of the binary product cocone is a colimit.
@@ -215,12 +149,6 @@ def isColimitOfHasBinaryCoproductOfPreservesColimit [PreservesColimit (pair X Y)
 
 variable [HasBinaryCoproduct (G.obj X) (G.obj Y)]
 
-/- warning: category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison -> CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparisonₓ'. -/
 /-- If the coproduct comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -235,12 +163,6 @@ def PreservesColimitPair.ofIsoCoprodComparison [i : IsIso (coprodComparison G X
 
 variable [PreservesColimit (pair X Y) G]
 
-/- warning: category_theory.limits.preserves_colimit_pair.iso -> CategoryTheory.Limits.PreservesColimitPair.iso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.iso CategoryTheory.Limits.PreservesColimitPair.isoₓ'. -/
 /--
 If `G` preserves the coproduct of `(X,Y)`, then the coproduct comparison map for `G` at `(X,Y)` is
 an isomorphism.
@@ -250,12 +172,6 @@ def PreservesColimitPair.iso : G.obj X ⨿ G.obj Y ≅ G.obj (X ⨿ Y) :=
     (isColimitOfHasBinaryCoproductOfPreservesColimit G X Y)
 #align category_theory.limits.preserves_colimit_pair.iso CategoryTheory.Limits.PreservesColimitPair.iso
 
-/- warning: category_theory.limits.preserves_colimit_pair.iso_hom -> CategoryTheory.Limits.PreservesColimitPair.iso_hom is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.PreservesColimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.PreservesColimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.iso_hom CategoryTheory.Limits.PreservesColimitPair.iso_homₓ'. -/
 @[simp]
 theorem PreservesColimitPair.iso_hom :
     (PreservesColimitPair.iso G X Y).Hom = coprodComparison G X Y :=
Diff
@@ -56,11 +56,7 @@ essentially lets us commute `binary_fan.mk` with `functor.map_cone`.
 def isLimitMapConeBinaryFanEquiv :
     IsLimit (G.mapCone (BinaryFan.mk f g)) ≃ IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
   (IsLimit.postcomposeHomEquiv (diagramIsoPair _) _).symm.trans
-    (IsLimit.equivIsoLimit
-      (Cones.ext (Iso.refl _)
-        (by
-          rintro (_ | _)
-          tidy)))
+    (IsLimit.equivIsoLimit (Cones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv
 
 /- warning: category_theory.limits.map_is_limit_of_preserves_of_is_limit -> CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit is a dubious translation:
@@ -173,11 +169,7 @@ This essentially lets us commute `binary_cofan.mk` with `functor.map_cocone`.
 def isColimitMapCoconeBinaryCofanEquiv :
     IsColimit (G.mapCocone (BinaryCofan.mk f g)) ≃ IsColimit (BinaryCofan.mk (G.map f) (G.map g)) :=
   (IsColimit.precomposeHomEquiv (diagramIsoPair _).symm _).symm.trans
-    (IsColimit.equivIsoColimit
-      (Cocones.ext (Iso.refl _)
-        (by
-          rintro (_ | _)
-          tidy)))
+    (IsColimit.equivIsoColimit (Cocones.ext (Iso.refl _) (by rintro (_ | _); tidy)))
 #align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv
 
 /- warning: category_theory.limits.map_is_colimit_of_preserves_of_is_colimit -> CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit is a dubious translation:
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 
 ! This file was ported from Lean 3 source module category_theory.limits.preserves.shapes.binary_products
-! leanprover-community/mathlib commit 024a4231815538ac739f52d08dd20a55da0d6b23
+! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.CategoryTheory.Limits.Preserves.Basic
 /-!
 # Preserving binary products
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Constructions to relate the notions of preserving binary products and reflecting binary products
 to concrete binary fans.
 
Diff
@@ -44,7 +44,7 @@ variable {P X Y Z : C} (f : P ⟶ X) (g : P ⟶ Y)
 lean 3 declaration is
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g)))
 but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 G (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquivₓ'. -/
 /--
 The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This
@@ -161,7 +161,7 @@ variable {P X Y Z : C} (f : X ⟶ P) (g : Y ⟶ P)
 lean 3 declaration is
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g)))
 but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 G (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquivₓ'. -/
 /-- The map of a binary cofan is a colimit iff
 the cofork consisting of the mapped morphisms is a colimit.
Diff
@@ -40,6 +40,12 @@ section
 
 variable {P X Y Z : C} (f : P ⟶ X) (g : P ⟶ Y)
 
+/- warning: category_theory.limits.is_limit_map_cone_binary_fan_equiv -> CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquivₓ'. -/
 /--
 The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This
 essentially lets us commute `binary_fan.mk` with `functor.map_cone`.
@@ -54,12 +60,24 @@ def isLimitMapConeBinaryFanEquiv :
           tidy)))
 #align category_theory.limits.is_limit_map_cone_binary_fan_equiv CategoryTheory.Limits.isLimitMapConeBinaryFanEquiv
 
+/- warning: category_theory.limits.map_is_limit_of_preserves_of_is_limit -> CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_is_limit_of_preserves_of_is_limit CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimitₓ'. -/
 /-- The property of preserving products expressed in terms of binary fans. -/
 def mapIsLimitOfPreservesOfIsLimit [PreservesLimit (pair X Y) G] (l : IsLimit (BinaryFan.mk f g)) :
     IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
   isLimitMapConeBinaryFanEquiv G f g (PreservesLimit.preserves l)
 #align category_theory.limits.map_is_limit_of_preserves_of_is_limit CategoryTheory.Limits.mapIsLimitOfPreservesOfIsLimit
 
+/- warning: category_theory.limits.is_limit_of_reflects_of_map_is_limit -> CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.ReflectsLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P X f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P Y g))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P X) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) P Y) [_inst_3 : CategoryTheory.Limits.ReflectsLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P X f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P Y g))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryFan.mk.{u1, u3} C _inst_1 X Y P f g))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_of_reflects_of_map_is_limit CategoryTheory.Limits.isLimitOfReflectsOfMapIsLimitₓ'. -/
 /-- The property of reflecting products expressed in terms of binary fans. -/
 def isLimitOfReflectsOfMapIsLimit [ReflectsLimit (pair X Y) G]
     (l : IsLimit (BinaryFan.mk (G.map f) (G.map g))) : IsLimit (BinaryFan.mk f g) :=
@@ -68,6 +86,12 @@ def isLimitOfReflectsOfMapIsLimit [ReflectsLimit (pair X Y) G]
 
 variable (X Y) [HasBinaryProduct X Y]
 
+/- warning: category_theory.limits.is_limit_of_has_binary_product_of_preserves_limit -> CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) X (CategoryTheory.Limits.prod.fst.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) Y (CategoryTheory.Limits.prod.snd.{u1, u3} C _inst_1 X Y _inst_3)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsLimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryFan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) X (CategoryTheory.Limits.prod.fst.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3) Y (CategoryTheory.Limits.prod.snd.{u1, u3} C _inst_1 X Y _inst_3)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_limit_of_has_binary_product_of_preserves_limit CategoryTheory.Limits.isLimitOfHasBinaryProductOfPreservesLimitₓ'. -/
 /-- If `G` preserves binary products and `C` has them, then the binary fan constructed of the mapped
 morphisms of the binary product cone is a limit.
 -/
@@ -78,6 +102,12 @@ def isLimitOfHasBinaryProductOfPreservesLimit [PreservesLimit (pair X Y) G] :
 
 variable [HasBinaryProduct (G.obj X) (G.obj Y)]
 
+/- warning: category_theory.limits.preserves_limit_pair.of_iso_prod_comparison -> CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.of_iso_prod_comparison CategoryTheory.Limits.PreservesLimitPair.ofIsoProdComparisonₓ'. -/
 /-- If the product comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -92,6 +122,12 @@ def PreservesLimitPair.ofIsoProdComparison [i : IsIso (prodComparison G X Y)] :
 
 variable [PreservesLimit (pair X Y) G]
 
+/- warning: category_theory.limits.preserves_limit_pair.iso -> CategoryTheory.Limits.PreservesLimitPair.iso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4)
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.iso CategoryTheory.Limits.PreservesLimitPair.isoₓ'. -/
 /-- If `G` preserves the product of `(X,Y)`, then the product comparison map for `G` at `(X,Y)` is
 an isomorphism.
 -/
@@ -99,6 +135,12 @@ def PreservesLimitPair.iso : G.obj (X ⨯ Y) ≅ G.obj X ⨯ G.obj Y :=
   IsLimit.conePointUniqueUpToIso (isLimitOfHasBinaryProductOfPreservesLimit G X Y) (limit.isLimit _)
 #align category_theory.limits.preserves_limit_pair.iso CategoryTheory.Limits.PreservesLimitPair.iso
 
+/- warning: category_theory.limits.preserves_limit_pair.iso_hom -> CategoryTheory.Limits.PreservesLimitPair.iso_hom is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4)) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Limits.PreservesLimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryProduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryProduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesLimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4)) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.prod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.prod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (CategoryTheory.Limits.PreservesLimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.prodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_limit_pair.iso_hom CategoryTheory.Limits.PreservesLimitPair.iso_homₓ'. -/
 @[simp]
 theorem PreservesLimitPair.iso_hom : (PreservesLimitPair.iso G X Y).Hom = prodComparison G X Y :=
   rfl
@@ -115,6 +157,12 @@ section
 
 variable {P X Y Z : C} (f : X ⟶ P) (g : Y ⟶ P)
 
+/- warning: category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv -> CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max 1 (succ u4) (succ u2), max 1 (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P), Equiv.{max (succ u4) (succ u2), max (succ u4) (succ u2)} (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G) (CategoryTheory.Functor.mapCocone.{0, u1, u2, 0, u3, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))) (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquivₓ'. -/
 /-- The map of a binary cofan is a colimit iff
 the cofork consisting of the mapped morphisms is a colimit.
 This essentially lets us commute `binary_cofan.mk` with `functor.map_cocone`.
@@ -129,12 +177,24 @@ def isColimitMapCoconeBinaryCofanEquiv :
           tidy)))
 #align category_theory.limits.is_colimit_map_cocone_binary_cofan_equiv CategoryTheory.Limits.isColimitMapCoconeBinaryCofanEquiv
 
+/- warning: category_theory.limits.map_is_colimit_of_preserves_of_is_colimit -> CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g)) -> (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_is_colimit_of_preserves_of_is_colimit CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimitₓ'. -/
 /-- The property of preserving coproducts expressed in terms of binary cofans. -/
 def mapIsColimitOfPreservesOfIsColimit [PreservesColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk f g)) : IsColimit (BinaryCofan.mk (G.map f) (G.map g)) :=
   isColimitMapCoconeBinaryCofanEquiv G f g (PreservesColimit.preserves l)
 #align category_theory.limits.map_is_colimit_of_preserves_of_is_colimit CategoryTheory.Limits.mapIsColimitOfPreservesOfIsColimit
 
+/- warning: category_theory.limits.is_colimit_of_reflects_of_map_is_colimit -> CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.ReflectsColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G P) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X P f) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y P g))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) {P : C} {X : C} {Y : C} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) X P) (g : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) Y P) [_inst_3 : CategoryTheory.Limits.ReflectsColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], (CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) P) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X P f) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y P g))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u3} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) (CategoryTheory.Limits.BinaryCofan.mk.{u1, u3} C _inst_1 X Y P f g))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_of_reflects_of_map_is_colimit CategoryTheory.Limits.isColimitOfReflectsOfMapIsColimitₓ'. -/
 /-- The property of reflecting coproducts expressed in terms of binary cofans. -/
 def isColimitOfReflectsOfMapIsColimit [ReflectsColimit (pair X Y) G]
     (l : IsColimit (BinaryCofan.mk (G.map f) (G.map g))) : IsColimit (BinaryCofan.mk f g) :=
@@ -143,6 +203,12 @@ def isColimitOfReflectsOfMapIsColimit [ReflectsColimit (pair X Y) G]
 
 variable (X Y) [HasBinaryCoproduct X Y]
 
+/- warning: category_theory.limits.is_colimit_of_has_binary_coproduct_of_preserves_colimit -> CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inl.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inr.{u1, u3} C _inst_1 X Y _inst_3)))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Limits.IsColimit.{0, u2, 0, u4} (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.pair.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.Limits.BinaryCofan.mk.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inl.{u1, u3} C _inst_1 X Y _inst_3)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3) (CategoryTheory.Limits.coprod.inr.{u1, u3} C _inst_1 X Y _inst_3)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.is_colimit_of_has_binary_coproduct_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasBinaryCoproductOfPreservesColimitₓ'. -/
 /--
 If `G` preserves binary coproducts and `C` has them, then the binary cofan constructed of the mapped
 morphisms of the binary product cocone is a colimit.
@@ -154,6 +220,12 @@ def isColimitOfHasBinaryCoproductOfPreservesColimit [PreservesColimit (pair X Y)
 
 variable [HasBinaryCoproduct (G.obj X) (G.obj Y)]
 
+/- warning: category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison -> CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [i : CategoryTheory.IsIso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)], CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.of_iso_coprod_comparison CategoryTheory.Limits.PreservesColimitPair.ofIsoCoprodComparisonₓ'. -/
 /-- If the coproduct comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the
 pair of `(X,Y)`.
 -/
@@ -168,6 +240,12 @@ def PreservesColimitPair.ofIsoCoprodComparison [i : IsIso (coprodComparison G X
 
 variable [PreservesColimit (pair X Y) G]
 
+/- warning: category_theory.limits.preserves_colimit_pair.iso -> CategoryTheory.Limits.PreservesColimitPair.iso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], CategoryTheory.Iso.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.iso CategoryTheory.Limits.PreservesColimitPair.isoₓ'. -/
 /--
 If `G` preserves the coproduct of `(X,Y)`, then the coproduct comparison map for `G` at `(X,Y)` is
 an isomorphism.
@@ -177,6 +255,12 @@ def PreservesColimitPair.iso : G.obj X ⨿ G.obj Y ≅ G.obj (X ⨿ Y) :=
     (isColimitOfHasBinaryCoproductOfPreservesColimit G X Y)
 #align category_theory.limits.preserves_colimit_pair.iso CategoryTheory.Limits.PreservesColimitPair.iso
 
+/- warning: category_theory.limits.preserves_colimit_pair.iso_hom -> CategoryTheory.Limits.PreservesColimitPair.iso_hom is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G Y) _inst_4) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.PreservesColimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u2, u4} D] (G : CategoryTheory.Functor.{u1, u2, u3, u4} C _inst_1 D _inst_2) (X : C) (Y : C) [_inst_3 : CategoryTheory.Limits.HasBinaryCoproduct.{u1, u3} C _inst_1 X Y] [_inst_4 : CategoryTheory.Limits.HasBinaryCoproduct.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y)] [_inst_5 : CategoryTheory.Limits.PreservesColimit.{0, 0, u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.Discrete.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.discreteCategory.{0} CategoryTheory.Limits.WalkingPair) (CategoryTheory.Limits.pair.{u1, u3} C _inst_1 X Y) G], Eq.{succ u2} (Quiver.Hom.{succ u2, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3))) (CategoryTheory.Iso.hom.{u2, u4} D _inst_2 (CategoryTheory.Limits.coprod.{u2, u4} D _inst_2 (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) Y) _inst_4) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.coprod.{u1, u3} C _inst_1 X Y _inst_3)) (CategoryTheory.Limits.PreservesColimitPair.iso.{u1, u2, u3, u4} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4 _inst_5)) (CategoryTheory.Limits.coprodComparison.{u1, u3, u4, u2} C _inst_1 D _inst_2 G X Y _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.preserves_colimit_pair.iso_hom CategoryTheory.Limits.PreservesColimitPair.iso_homₓ'. -/
 @[simp]
 theorem PreservesColimitPair.iso_hom :
     (PreservesColimitPair.iso G X Y).Hom = coprodComparison G X Y :=

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -26,9 +26,7 @@ universe v₁ v₂ u₁ u₂
 open CategoryTheory CategoryTheory.Category CategoryTheory.Limits
 
 variable {C : Type u₁} [Category.{v₁} C]
-
 variable {D : Type u₂} [Category.{v₂} D]
-
 variable (G : C ⥤ D)
 
 namespace CategoryTheory.Limits
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
-
-! This file was ported from Lean 3 source module category_theory.limits.preserves.shapes.binary_products
-! leanprover-community/mathlib commit 024a4231815538ac739f52d08dd20a55da0d6b23
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts
 import Mathlib.CategoryTheory.Limits.Preserves.Basic
 
+#align_import category_theory.limits.preserves.shapes.binary_products from "leanprover-community/mathlib"@"024a4231815538ac739f52d08dd20a55da0d6b23"
+
 /-!
 # Preserving binary products
 
chore: strip trailing spaces in lean files (#2828)

vscode is already configured by .vscode/settings.json to trim these on save. It's not clear how they've managed to stick around.

By doing this all in one PR now, it avoids getting random whitespace diffs in PRs later.

This was done with a regex search in vscode,

image

Diff
@@ -116,8 +116,8 @@ the cofork consisting of the mapped morphisms is a colimit.
 This essentially lets us commute `BinaryCofan.mk` with `Functor.mapCocone`.
 -/
 def isColimitMapCoconeBinaryCofanEquiv :
-    IsColimit (Functor.mapCocone G (BinaryCofan.mk f g)) 
-    ≃ IsColimit (BinaryCofan.mk (G.map f) (G.map g)) := 
+    IsColimit (Functor.mapCocone G (BinaryCofan.mk f g))
+    ≃ IsColimit (BinaryCofan.mk (G.map f) (G.map g)) :=
   (IsColimit.precomposeHomEquiv (diagramIsoPair _).symm _).symm.trans
     (IsColimit.equivIsoColimit
       (Cocones.ext (Iso.refl _)
@@ -183,4 +183,3 @@ instance : IsIso (coprodComparison G X Y) := by
 end
 
 end CategoryTheory.Limits
-
fix: use dot notation for mapCone/mapCocone (#2696)

Thanks to #2661 we have G.mapCone back. This swiches over globally.

Diff
@@ -45,7 +45,7 @@ The map of a binary fan is a limit iff the fork consisting of the mapped morphis
 essentially lets us commute `BinaryFan.mk` with `Functor.mapCone`.
 -/
 def isLimitMapConeBinaryFanEquiv :
-    IsLimit (Functor.mapCone G (BinaryFan.mk f g)) ≃ IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
+    IsLimit (G.mapCone (BinaryFan.mk f g)) ≃ IsLimit (BinaryFan.mk (G.map f) (G.map g)) :=
   (IsLimit.postcomposeHomEquiv (diagramIsoPair _) _).symm.trans
     (IsLimit.equivIsoLimit
       (Cones.ext (Iso.refl _)
feat: port CategoryTheory.Limits.Preserves.Shapes.BinaryProduct (#2654)

Dependencies 109

110 files ported (100.0%)
42604 lines ported (100.0%)

All dependencies are ported!