category_theory.limits.shapes.pullbacksMathlib.CategoryTheory.Limits.Shapes.Pullbacks

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -191,9 +191,9 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   apply cones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.π.naturality walking_cospan.hom.inl
-    dsimp at h₁ ; simp only [category.id_comp] at h₁ 
+    dsimp at h₁; simp only [category.id_comp] at h₁
     have h₂ := t.π.naturality walking_cospan.hom.inl
-    dsimp at h₂ ; simp only [category.id_comp] at h₂ 
+    dsimp at h₂; simp only [category.id_comp] at h₂
     simp_rw [h₂, ← category.assoc, ← w₁, ← h₁]
   · exact w₁
   · exact w₂
@@ -211,9 +211,9 @@ def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
   apply cocones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.ι.naturality walking_span.hom.fst
-    dsimp at h₁ ; simp only [category.comp_id] at h₁ 
+    dsimp at h₁; simp only [category.comp_id] at h₁
     have h₂ := t.ι.naturality walking_span.hom.fst
-    dsimp at h₂ ; simp only [category.comp_id] at h₂ 
+    dsimp at h₂; simp only [category.comp_id] at h₂
     simp_rw [← h₁, category.assoc, w₁, h₂]
   · exact w₁
   · exact w₂
@@ -710,7 +710,7 @@ theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.s
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
   by
   have w := t.π.naturality walking_cospan.hom.inl
-  dsimp at w ; simpa using w
+  dsimp at w; simpa using w
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
 -/
 
@@ -1004,7 +1004,7 @@ theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.in
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
   by
   have w := t.ι.naturality walking_span.hom.fst
-  dsimp at w ; simpa using w.symm
+  dsimp at w; simpa using w.symm
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
 -/
 
Diff
@@ -875,9 +875,9 @@ def IsLimit.mk {W : C} {fst : W ⟶ X} {snd : W ⟶ Y} (eq : fst ≫ f = snd ≫
 #align category_theory.limits.pullback_cone.is_limit.mk CategoryTheory.Limits.PullbackCone.IsLimit.mk
 -/
 
-#print CategoryTheory.Limits.PullbackCone.flipIsLimit /-
+#print CategoryTheory.Limits.PullbackCone.isLimitOfFlip /-
 /-- The flip of a pullback square is a pullback square. -/
-def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
+def isLimitOfFlip {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
     (t : IsLimit (mk _ _ comm.symm)) : IsLimit (mk _ _ comm) :=
   isLimitAux' _ fun s =>
     by
@@ -887,7 +887,7 @@ def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
     apply (mk k h _).equalizer_ext
     · rwa [(is_limit.lift' t _ _ _).2.1]
     · rwa [(is_limit.lift' t _ _ _).2.2]
-#align category_theory.limits.pullback_cone.flip_is_limit CategoryTheory.Limits.PullbackCone.flipIsLimit
+#align category_theory.limits.pullback_cone.flip_is_limit CategoryTheory.Limits.PullbackCone.isLimitOfFlip
 -/
 
 #print CategoryTheory.Limits.PullbackCone.isLimitMkIdId /-
@@ -1169,9 +1169,9 @@ def IsColimit.mk {W : C} {inl : Y ⟶ W} {inr : Z ⟶ W} (eq : f ≫ inl = g ≫
 #align category_theory.limits.pushout_cocone.is_colimit.mk CategoryTheory.Limits.PushoutCocone.IsColimit.mk
 -/
 
-#print CategoryTheory.Limits.PushoutCocone.flipIsColimit /-
+#print CategoryTheory.Limits.PushoutCocone.isColimitOfFlip /-
 /-- The flip of a pushout square is a pushout square. -/
-def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
+def isColimitOfFlip {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
     (t : IsColimit (mk _ _ comm.symm)) : IsColimit (mk _ _ comm) :=
   isColimitAux' _ fun s =>
     by
@@ -1181,7 +1181,7 @@ def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
     apply (mk k h _).coequalizer_ext
     · rwa [(is_colimit.desc' t _ _ _).2.1]
     · rwa [(is_colimit.desc' t _ _ _).2.2]
-#align category_theory.limits.pushout_cocone.flip_is_colimit CategoryTheory.Limits.PushoutCocone.flipIsColimit
+#align category_theory.limits.pushout_cocone.flip_is_colimit CategoryTheory.Limits.PushoutCocone.isColimitOfFlip
 -/
 
 #print CategoryTheory.Limits.PushoutCocone.isColimitMkIdId /-
@@ -1858,7 +1858,7 @@ variable (f : X ⟶ Z) (g : Y ⟶ Z)
 /-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
 theorem hasPullback_symmetry [HasPullback f g] : HasPullback g f :=
   ⟨⟨⟨PullbackCone.mk _ _ pullback.condition.symm,
-        PullbackCone.flipIsLimit (pullbackIsPullback _ _)⟩⟩⟩
+        PullbackCone.isLimitOfFlip (pullbackIsPullback _ _)⟩⟩⟩
 #align category_theory.limits.has_pullback_symmetry CategoryTheory.Limits.hasPullback_symmetry
 -/
 
@@ -1868,7 +1868,7 @@ attribute [local instance] has_pullback_symmetry
 /-- The isomorphism `X ×[Z] Y ≅ Y ×[Z] X`. -/
 def pullbackSymmetry [HasPullback f g] : pullback f g ≅ pullback g f :=
   IsLimit.conePointUniqueUpToIso
-    (PullbackCone.flipIsLimit (pullbackIsPullback f g) :
+    (PullbackCone.isLimitOfFlip (pullbackIsPullback f g) :
       IsLimit (PullbackCone.mk _ _ pullback.condition.symm))
     (limit.isLimit _)
 #align category_theory.limits.pullback_symmetry CategoryTheory.Limits.pullbackSymmetry
@@ -1914,7 +1914,7 @@ variable (f : X ⟶ Y) (g : X ⟶ Z)
 /-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
 theorem hasPushout_symmetry [HasPushout f g] : HasPushout g f :=
   ⟨⟨⟨PushoutCocone.mk _ _ pushout.condition.symm,
-        PushoutCocone.flipIsColimit (pushoutIsPushout _ _)⟩⟩⟩
+        PushoutCocone.isColimitOfFlip (pushoutIsPushout _ _)⟩⟩⟩
 #align category_theory.limits.has_pushout_symmetry CategoryTheory.Limits.hasPushout_symmetry
 -/
 
@@ -1924,7 +1924,7 @@ attribute [local instance] has_pushout_symmetry
 /-- The isomorphism `Y ⨿[X] Z ≅ Z ⨿[X] Y`. -/
 def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
   IsColimit.coconePointUniqueUpToIso
-    (PushoutCocone.flipIsColimit (pushoutIsPushout f g) :
+    (PushoutCocone.isColimitOfFlip (pushoutIsPushout f g) :
       IsColimit (PushoutCocone.mk _ _ pushout.condition.symm))
     (colimit.isColimit _)
 #align category_theory.limits.pushout_symmetry CategoryTheory.Limits.pushoutSymmetry
@@ -1935,7 +1935,7 @@ def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
 theorem inl_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inl ≫ (pushoutSymmetry f g).Hom = pushout.inr :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
-    (PushoutCocone.flipIsColimit (pushoutIsPushout g f)) _
+    (PushoutCocone.isColimitOfFlip (pushoutIsPushout g f)) _
 #align category_theory.limits.inl_comp_pushout_symmetry_hom CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom
 -/
 
@@ -1944,7 +1944,7 @@ theorem inl_comp_pushoutSymmetry_hom [HasPushout f g] :
 theorem inr_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inr ≫ (pushoutSymmetry f g).Hom = pushout.inl :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
-    (PushoutCocone.flipIsColimit (pushoutIsPushout g f)) _
+    (PushoutCocone.isColimitOfFlip (pushoutIsPushout g f)) _
 #align category_theory.limits.inr_comp_pushout_symmetry_hom CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2018 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Markus Himmel, Bhavik Mehta, Andrew Yang
 -/
-import Mathbin.CategoryTheory.Limits.Shapes.WidePullbacks
-import Mathbin.CategoryTheory.Limits.Shapes.BinaryProducts
+import CategoryTheory.Limits.Shapes.WidePullbacks
+import CategoryTheory.Limits.Shapes.BinaryProducts
 
 #align_import category_theory.limits.shapes.pullbacks from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Markus Himmel, Bhavik Mehta, Andrew Yang
-
-! This file was ported from Lean 3 source module category_theory.limits.shapes.pullbacks
-! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Limits.Shapes.WidePullbacks
 import Mathbin.CategoryTheory.Limits.Shapes.BinaryProducts
 
+#align_import category_theory.limits.shapes.pullbacks from "leanprover-community/mathlib"@"f47581155c818e6361af4e4fda60d27d020c226b"
+
 /-!
 # Pullbacks
 
Diff
@@ -183,6 +183,7 @@ open WalkingSpan.Hom WalkingCospan.Hom WidePullbackShape.Hom WidePushoutShape.Ho
 
 variable {C : Type u} [Category.{v} C]
 
+#print CategoryTheory.Limits.WalkingCospan.ext /-
 /-- To construct an isomorphism of cones over the walking cospan,
 it suffices to construct an isomorphism
 of the cone points and check it commutes with the legs to `left` and `right`. -/
@@ -200,7 +201,9 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   · exact w₁
   · exact w₂
 #align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.ext
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.ext /-
 /-- To construct an isomorphism of cocones over the walking span,
 it suffices to construct an isomorphism
 of the cocone points and check it commutes with the legs from `left` and `right`. -/
@@ -218,6 +221,7 @@ def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
   · exact w₁
   · exact w₂
 #align category_theory.limits.walking_span.ext CategoryTheory.Limits.WalkingSpan.ext
+-/
 
 #print CategoryTheory.Limits.cospan /-
 /-- `cospan f g` is the functor from the walking cospan hitting `f` and `g`. -/
@@ -235,196 +239,264 @@ def span {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : WalkingSpan ⥤ C :=
 #align category_theory.limits.span CategoryTheory.Limits.span
 -/
 
+#print CategoryTheory.Limits.cospan_left /-
 @[simp]
 theorem cospan_left {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.left = X :=
   rfl
 #align category_theory.limits.cospan_left CategoryTheory.Limits.cospan_left
+-/
 
+#print CategoryTheory.Limits.span_left /-
 @[simp]
 theorem span_left {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.left = Y :=
   rfl
 #align category_theory.limits.span_left CategoryTheory.Limits.span_left
+-/
 
+#print CategoryTheory.Limits.cospan_right /-
 @[simp]
 theorem cospan_right {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).obj WalkingCospan.right = Y :=
   rfl
 #align category_theory.limits.cospan_right CategoryTheory.Limits.cospan_right
+-/
 
+#print CategoryTheory.Limits.span_right /-
 @[simp]
 theorem span_right {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.right = Z :=
   rfl
 #align category_theory.limits.span_right CategoryTheory.Limits.span_right
+-/
 
+#print CategoryTheory.Limits.cospan_one /-
 @[simp]
 theorem cospan_one {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.one = Z :=
   rfl
 #align category_theory.limits.cospan_one CategoryTheory.Limits.cospan_one
+-/
 
+#print CategoryTheory.Limits.span_zero /-
 @[simp]
 theorem span_zero {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.zero = X :=
   rfl
 #align category_theory.limits.span_zero CategoryTheory.Limits.span_zero
+-/
 
+#print CategoryTheory.Limits.cospan_map_inl /-
 @[simp]
 theorem cospan_map_inl {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inl = f :=
   rfl
 #align category_theory.limits.cospan_map_inl CategoryTheory.Limits.cospan_map_inl
+-/
 
+#print CategoryTheory.Limits.span_map_fst /-
 @[simp]
 theorem span_map_fst {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.fst = f :=
   rfl
 #align category_theory.limits.span_map_fst CategoryTheory.Limits.span_map_fst
+-/
 
+#print CategoryTheory.Limits.cospan_map_inr /-
 @[simp]
 theorem cospan_map_inr {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inr = g :=
   rfl
 #align category_theory.limits.cospan_map_inr CategoryTheory.Limits.cospan_map_inr
+-/
 
+#print CategoryTheory.Limits.span_map_snd /-
 @[simp]
 theorem span_map_snd {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.snd = g :=
   rfl
 #align category_theory.limits.span_map_snd CategoryTheory.Limits.span_map_snd
+-/
 
+#print CategoryTheory.Limits.cospan_map_id /-
 theorem cospan_map_id {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) (w : WalkingCospan) :
     (cospan f g).map (WalkingCospan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_map_id CategoryTheory.Limits.cospan_map_id
+-/
 
+#print CategoryTheory.Limits.span_map_id /-
 theorem span_map_id {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) (w : WalkingSpan) :
     (span f g).map (WalkingSpan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_id
+-/
 
+#print CategoryTheory.Limits.diagramIsoCospan /-
 /-- Every diagram indexing an pullback is naturally isomorphic (actually, equal) to a `cospan` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoCospan (F : WalkingCospan ⥤ C) : F ≅ cospan (F.map inl) (F.map inr) :=
   NatIso.ofComponents (fun j => eqToIso (by tidy)) (by tidy)
 #align category_theory.limits.diagram_iso_cospan CategoryTheory.Limits.diagramIsoCospan
+-/
 
+#print CategoryTheory.Limits.diagramIsoSpan /-
 /-- Every diagram indexing a pushout is naturally isomorphic (actually, equal) to a `span` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoSpan (F : WalkingSpan ⥤ C) : F ≅ span (F.map fst) (F.map snd) :=
   NatIso.ofComponents (fun j => eqToIso (by tidy)) (by tidy)
 #align category_theory.limits.diagram_iso_span CategoryTheory.Limits.diagramIsoSpan
+-/
 
 variable {D : Type u₂} [Category.{v₂} D]
 
+#print CategoryTheory.Limits.cospanCompIso /-
 /-- A functor applied to a cospan is a cospan. -/
 def cospanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     cospan f g ⋙ F ≅ cospan (F.map f) (F.map g) :=
   NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩) <;> exact iso.refl _)
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp)
 #align category_theory.limits.cospan_comp_iso CategoryTheory.Limits.cospanCompIso
+-/
 
 section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
 
+#print CategoryTheory.Limits.cospanCompIso_app_left /-
 @[simp]
 theorem cospanCompIso_app_left : (cospanCompIso F f g).app WalkingCospan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_left
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_app_right /-
 @[simp]
 theorem cospanCompIso_app_right : (cospanCompIso F f g).app WalkingCospan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_right
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_app_one /-
 @[simp]
 theorem cospanCompIso_app_one : (cospanCompIso F f g).app WalkingCospan.one = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_one
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_hom_app_left /-
 @[simp]
 theorem cospanCompIso_hom_app_left : (cospanCompIso F f g).Hom.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_left
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_hom_app_right /-
 @[simp]
 theorem cospanCompIso_hom_app_right : (cospanCompIso F f g).Hom.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_right
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_hom_app_one /-
 @[simp]
 theorem cospanCompIso_hom_app_one : (cospanCompIso F f g).Hom.app WalkingCospan.one = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_one
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_inv_app_left /-
 @[simp]
 theorem cospanCompIso_inv_app_left : (cospanCompIso F f g).inv.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_left
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_inv_app_right /-
 @[simp]
 theorem cospanCompIso_inv_app_right : (cospanCompIso F f g).inv.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_right
+-/
 
+#print CategoryTheory.Limits.cospanCompIso_inv_app_one /-
 @[simp]
 theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.one = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_one CategoryTheory.Limits.cospanCompIso_inv_app_one
+-/
 
 end
 
+#print CategoryTheory.Limits.spanCompIso /-
 /-- A functor applied to a span is a span. -/
 def spanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) :
     span f g ⋙ F ≅ span (F.map f) (F.map g) :=
   NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩) <;> exact iso.refl _)
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp)
 #align category_theory.limits.span_comp_iso CategoryTheory.Limits.spanCompIso
+-/
 
 section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
 
+#print CategoryTheory.Limits.spanCompIso_app_left /-
 @[simp]
 theorem spanCompIso_app_left : (spanCompIso F f g).app WalkingSpan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_left
+-/
 
+#print CategoryTheory.Limits.spanCompIso_app_right /-
 @[simp]
 theorem spanCompIso_app_right : (spanCompIso F f g).app WalkingSpan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_right
+-/
 
+#print CategoryTheory.Limits.spanCompIso_app_zero /-
 @[simp]
 theorem spanCompIso_app_zero : (spanCompIso F f g).app WalkingSpan.zero = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zero
+-/
 
+#print CategoryTheory.Limits.spanCompIso_hom_app_left /-
 @[simp]
 theorem spanCompIso_hom_app_left : (spanCompIso F f g).Hom.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_left
+-/
 
+#print CategoryTheory.Limits.spanCompIso_hom_app_right /-
 @[simp]
 theorem spanCompIso_hom_app_right : (spanCompIso F f g).Hom.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_right
+-/
 
+#print CategoryTheory.Limits.spanCompIso_hom_app_zero /-
 @[simp]
 theorem spanCompIso_hom_app_zero : (spanCompIso F f g).Hom.app WalkingSpan.zero = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zero
+-/
 
+#print CategoryTheory.Limits.spanCompIso_inv_app_left /-
 @[simp]
 theorem spanCompIso_inv_app_left : (spanCompIso F f g).inv.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_left
+-/
 
+#print CategoryTheory.Limits.spanCompIso_inv_app_right /-
 @[simp]
 theorem spanCompIso_inv_app_right : (spanCompIso F f g).inv.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_right
+-/
 
+#print CategoryTheory.Limits.spanCompIso_inv_app_zero /-
 @[simp]
 theorem spanCompIso_inv_app_zero : (spanCompIso F f g).inv.app WalkingSpan.zero = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_zero CategoryTheory.Limits.spanCompIso_inv_app_zero
+-/
 
 end
 
@@ -447,50 +519,68 @@ def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ
 
 variable (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom)
 
+#print CategoryTheory.Limits.cospanExt_app_left /-
 @[simp]
 theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_left
+-/
 
+#print CategoryTheory.Limits.cospanExt_app_right /-
 @[simp]
 theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_right
+-/
 
+#print CategoryTheory.Limits.cospanExt_app_one /-
 @[simp]
 theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_one
+-/
 
+#print CategoryTheory.Limits.cospanExt_hom_app_left /-
 @[simp]
 theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.left = iX.Hom :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_left
+-/
 
+#print CategoryTheory.Limits.cospanExt_hom_app_right /-
 @[simp]
 theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.right = iY.Hom :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_right
+-/
 
+#print CategoryTheory.Limits.cospanExt_hom_app_one /-
 @[simp]
 theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_one
+-/
 
+#print CategoryTheory.Limits.cospanExt_inv_app_left /-
 @[simp]
 theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.left = iX.inv :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_left
+-/
 
+#print CategoryTheory.Limits.cospanExt_inv_app_right /-
 @[simp]
 theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.right = iY.inv :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_right
+-/
 
+#print CategoryTheory.Limits.cospanExt_inv_app_one /-
 @[simp]
 theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_one
+-/
 
 end
 
@@ -509,50 +599,68 @@ def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.H
 
 variable (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom)
 
+#print CategoryTheory.Limits.spanExt_app_left /-
 @[simp]
 theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_left
+-/
 
+#print CategoryTheory.Limits.spanExt_app_right /-
 @[simp]
 theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_right
+-/
 
+#print CategoryTheory.Limits.spanExt_app_one /-
 @[simp]
 theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX := by dsimp [span_ext];
   simp
 #align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_one
+-/
 
+#print CategoryTheory.Limits.spanExt_hom_app_left /-
 @[simp]
 theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_left
+-/
 
+#print CategoryTheory.Limits.spanExt_hom_app_right /-
 @[simp]
 theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_right
+-/
 
+#print CategoryTheory.Limits.spanExt_hom_app_zero /-
 @[simp]
 theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zero
+-/
 
+#print CategoryTheory.Limits.spanExt_inv_app_left /-
 @[simp]
 theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_left
+-/
 
+#print CategoryTheory.Limits.spanExt_inv_app_right /-
 @[simp]
 theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_right
+-/
 
+#print CategoryTheory.Limits.spanExt_inv_app_zero /-
 @[simp]
 theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zero
+-/
 
 end
 
@@ -586,23 +694,30 @@ abbrev snd (t : PullbackCone f g) : t.pt ⟶ Y :=
 #align category_theory.limits.pullback_cone.snd CategoryTheory.Limits.PullbackCone.snd
 -/
 
+#print CategoryTheory.Limits.PullbackCone.π_app_left /-
 @[simp]
 theorem π_app_left (c : PullbackCone f g) : c.π.app WalkingCospan.left = c.fst :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_left CategoryTheory.Limits.PullbackCone.π_app_left
+-/
 
+#print CategoryTheory.Limits.PullbackCone.π_app_right /-
 @[simp]
 theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.snd :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_right
+-/
 
+#print CategoryTheory.Limits.PullbackCone.condition_one /-
 @[simp]
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
   by
   have w := t.π.naturality walking_cospan.hom.inl
   dsimp at w ; simpa using w
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
+-/
 
+#print CategoryTheory.Limits.PullbackCone.isLimitAux /-
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content -/
 def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶ t.pt)
@@ -618,6 +733,7 @@ def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶
         fun j' => WalkingPair.casesOn j' (fac_left s) (fac_right s)
     uniq := uniq }
 #align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAux
+-/
 
 #print CategoryTheory.Limits.PullbackCone.isLimitAux' /-
 /-- This is another convenient method to verify that a pullback cone is a limit cone. It
@@ -647,23 +763,29 @@ def mk {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) : Pu
 #align category_theory.limits.pullback_cone.mk CategoryTheory.Limits.PullbackCone.mk
 -/
 
+#print CategoryTheory.Limits.PullbackCone.mk_π_app_left /-
 @[simp]
 theorem mk_π_app_left {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.left = fst :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_left
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mk_π_app_right /-
 @[simp]
 theorem mk_π_app_right {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.right = snd :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_right
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mk_π_app_one /-
 @[simp]
 theorem mk_π_app_one {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.one = fst ≫ f :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_one CategoryTheory.Limits.PullbackCone.mk_π_app_one
+-/
 
 #print CategoryTheory.Limits.PullbackCone.mk_fst /-
 @[simp]
@@ -688,6 +810,7 @@ theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
 #align category_theory.limits.pullback_cone.condition CategoryTheory.Limits.PullbackCone.condition
 -/
 
+#print CategoryTheory.Limits.PullbackCone.equalizer_ext /-
 /-- To check whether a morphism is equalized by the maps of a pullback cone, it suffices to check
   it for `fst t` and `snd t` -/
 theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ : k ≫ fst t = l ≫ fst t)
@@ -696,6 +819,7 @@ theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ :
   | some walking_pair.right => h₁
   | none => by rw [← t.w inl, reassoc_of h₀]
 #align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_ext
+-/
 
 #print CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext /-
 theorem IsLimit.hom_ext {t : PullbackCone f g} (ht : IsLimit t) {W : C} {k l : W ⟶ t.pt}
@@ -864,23 +988,30 @@ abbrev inr (t : PushoutCocone f g) : Z ⟶ t.pt :=
 #align category_theory.limits.pushout_cocone.inr CategoryTheory.Limits.PushoutCocone.inr
 -/
 
+#print CategoryTheory.Limits.PushoutCocone.ι_app_left /-
 @[simp]
 theorem ι_app_left (c : PushoutCocone f g) : c.ι.app WalkingSpan.left = c.inl :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_left CategoryTheory.Limits.PushoutCocone.ι_app_left
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.ι_app_right /-
 @[simp]
 theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.inr :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_right
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.condition_zero /-
 @[simp]
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
   by
   have w := t.ι.naturality walking_span.hom.fst
   dsimp at w ; simpa using w.symm
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.isColimitAux /-
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
     It only asks for a proof of facts that carry any mathematical content -/
 def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt ⟶ s.pt)
@@ -896,6 +1027,7 @@ def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt
         WalkingPair.casesOn j' (fac_left s) (fac_right s)
     uniq := uniq }
 #align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAux
+-/
 
 #print CategoryTheory.Limits.PushoutCocone.isColimitAux' /-
 /-- This is another convenient method to verify that a pushout cocone is a colimit cocone. It
@@ -924,23 +1056,29 @@ def mk {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) : Pu
 #align category_theory.limits.pushout_cocone.mk CategoryTheory.Limits.PushoutCocone.mk
 -/
 
+#print CategoryTheory.Limits.PushoutCocone.mk_ι_app_left /-
 @[simp]
 theorem mk_ι_app_left {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.left = inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_left
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.mk_ι_app_right /-
 @[simp]
 theorem mk_ι_app_right {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.right = inr :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_right
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero /-
 @[simp]
 theorem mk_ι_app_zero {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.zero = f ≫ inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_zero CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero
+-/
 
 #print CategoryTheory.Limits.PushoutCocone.mk_inl /-
 @[simp]
@@ -965,6 +1103,7 @@ theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
 #align category_theory.limits.pushout_cocone.condition CategoryTheory.Limits.PushoutCocone.condition
 -/
 
+#print CategoryTheory.Limits.PushoutCocone.coequalizer_ext /-
 /-- To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check
   it for `inl t` and `inr t` -/
 theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
@@ -974,6 +1113,7 @@ theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
   | some walking_pair.right => h₁
   | none => by rw [← t.w fst, category.assoc, category.assoc, h₀]
 #align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_ext
+-/
 
 #print CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext /-
 theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k l : t.pt ⟶ W}
@@ -1117,6 +1257,7 @@ def isColimitOfEpiComp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h] (s : Pu
 
 end PushoutCocone
 
+#print CategoryTheory.Limits.Cone.ofPullbackCone /-
 /-- This is a helper construction that can be useful when verifying that a category has all
     pullbacks. Given `F : walking_cospan ⥤ C`, which is really the same as
     `cospan (F.map inl) (F.map inr)`, and a pullback cone on `F.map inl` and `F.map inr`, we
@@ -1130,7 +1271,9 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
   pt := t.pt
   π := t.π ≫ (diagramIsoCospan F).inv
 #align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackCone
+-/
 
+#print CategoryTheory.Limits.Cocone.ofPushoutCocone /-
 /-- This is a helper construction that can be useful when verifying that a category has all
     pushout. Given `F : walking_span ⥤ C`, which is really the same as
     `span (F.map fst) (F.mal snd)`, and a pushout cocone on `F.map fst` and `F.map snd`,
@@ -1144,7 +1287,9 @@ def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst
   pt := t.pt
   ι := (diagramIsoSpan F).Hom ≫ t.ι
 #align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCocone
+-/
 
+#print CategoryTheory.Limits.PullbackCone.ofCone /-
 /-- Given `F : walking_cospan ⥤ C`, which is really the same as `cospan (F.map inl) (F.map inr)`,
     and a cone on `F`, we get a pullback cone on `F.map inl` and `F.map inr`. -/
 @[simps]
@@ -1153,7 +1298,9 @@ def PullbackCone.ofCone {F : WalkingCospan ⥤ C} (t : Cone F) : PullbackCone (F
   pt := t.pt
   π := t.π ≫ (diagramIsoCospan F).Hom
 #align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofCone
+-/
 
+#print CategoryTheory.Limits.PullbackCone.isoMk /-
 /-- A diagram `walking_cospan ⥤ C` is isomorphic to some `pullback_cone.mk` after
 composing with `diagram_iso_cospan`. -/
 @[simps]
@@ -1163,7 +1310,9 @@ def PullbackCone.isoMk {F : WalkingCospan ⥤ C} (t : Cone F) :
         ((t.π.naturality inl).symm.trans (t.π.naturality inr : _)) :=
   Cones.ext (Iso.refl _) <| by rintro (_ | (_ | _)) <;> · dsimp; simp
 #align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMk
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.ofCocone /-
 /-- Given `F : walking_span ⥤ C`, which is really the same as `span (F.map fst) (F.map snd)`,
     and a cocone on `F`, we get a pushout cocone on `F.map fst` and `F.map snd`. -/
 @[simps]
@@ -1173,7 +1322,9 @@ def PushoutCocone.ofCocone {F : WalkingSpan ⥤ C} (t : Cocone F) :
   pt := t.pt
   ι := (diagramIsoSpan F).inv ≫ t.ι
 #align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCocone
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.isoMk /-
 /-- A diagram `walking_span ⥤ C` is isomorphic to some `pushout_cocone.mk` after composing with
 `diagram_iso_span`. -/
 @[simps]
@@ -1183,6 +1334,7 @@ def PushoutCocone.isoMk {F : WalkingSpan ⥤ C} (t : Cocone F) :
         ((t.ι.naturality fst).trans (t.ι.naturality snd).symm) :=
   Cocones.ext (Iso.refl _) <| by rintro (_ | (_ | _)) <;> · dsimp; simp
 #align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMk
+-/
 
 #print CategoryTheory.Limits.HasPullback /-
 /-- `has_pullback f g` represents a particular choice of limiting cone
@@ -1619,6 +1771,7 @@ section
 
 variable (G : C ⥤ D)
 
+#print CategoryTheory.Limits.pullbackComparison /-
 /-- The comparison morphism for the pullback of `f,g`.
 This is an isomorphism iff `G` preserves the pullback of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1628,21 +1781,27 @@ def pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] [HasPullbac
   pullback.lift (G.map pullback.fst) (G.map pullback.snd)
     (by simp only [← G.map_comp, pullback.condition])
 #align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparison
+-/
 
+#print CategoryTheory.Limits.pullbackComparison_comp_fst /-
 @[simp, reassoc]
 theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
     pullbackComparison G f g ≫ pullback.fst = G.map pullback.fst :=
   pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fst
+-/
 
+#print CategoryTheory.Limits.pullbackComparison_comp_snd /-
 @[simp, reassoc]
 theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
     pullbackComparison G f g ≫ pullback.snd = G.map pullback.snd :=
   pullback.lift_snd _ _ _
 #align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_snd
+-/
 
+#print CategoryTheory.Limits.map_lift_pullbackComparison /-
 @[simp, reassoc]
 theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] {W : C} {h : W ⟶ X} {k : W ⟶ Y} (w : h ≫ f = k ≫ g) :
@@ -1650,7 +1809,9 @@ theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
       pullback.lift (G.map h) (G.map k) (by simp only [← G.map_comp, w]) :=
   by ext <;> simp [← G.map_comp]
 #align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparison
+-/
 
+#print CategoryTheory.Limits.pushoutComparison /-
 /-- The comparison morphism for the pushout of `f,g`.
 This is an isomorphism iff `G` preserves the pushout of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1660,19 +1821,25 @@ def pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] [HasPushout (
   pushout.desc (G.map pushout.inl) (G.map pushout.inr)
     (by simp only [← G.map_comp, pushout.condition])
 #align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparison
+-/
 
+#print CategoryTheory.Limits.inl_comp_pushoutComparison /-
 @[simp, reassoc]
 theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inl ≫ pushoutComparison G f g = G.map pushout.inl :=
   pushout.inl_desc _ _ _
 #align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparison
+-/
 
+#print CategoryTheory.Limits.inr_comp_pushoutComparison /-
 @[simp, reassoc]
 theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inr ≫ pushoutComparison G f g = G.map pushout.inr :=
   pushout.inr_desc _ _ _
 #align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparison
+-/
 
+#print CategoryTheory.Limits.pushoutComparison_map_desc /-
 @[simp, reassoc]
 theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] {W : C} {h : Y ⟶ W} {k : Z ⟶ W} (w : f ≫ h = g ≫ k) :
@@ -1680,6 +1847,7 @@ theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
       pushout.desc (G.map h) (G.map k) (by simp only [← G.map_comp, w]) :=
   by ext <;> simp [← G.map_comp]
 #align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_desc
+-/
 
 end
 
@@ -1848,20 +2016,26 @@ theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ :=
 #align category_theory.limits.pullback_cone_of_left_iso_snd CategoryTheory.Limits.pullbackConeOfLeftIso_snd
 -/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none /-
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g := by
   delta pullback_cone_of_left_iso; simp
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left /-
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_left : (pullbackConeOfLeftIso f g).π.app left = g ≫ inv f :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right /-
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_right : (pullbackConeOfLeftIso f g).π.app right = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_right CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right
+-/
 
 #print CategoryTheory.Limits.pullbackConeOfLeftIsoIsLimit /-
 /-- Verify that the constructed limit cone is indeed a limit. -/
@@ -1948,20 +2122,26 @@ theorem pullbackConeOfRightIso_snd : (pullbackConeOfRightIso f g).snd = f ≫ in
 #align category_theory.limits.pullback_cone_of_right_iso_snd CategoryTheory.Limits.pullbackConeOfRightIso_snd
 -/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none /-
 @[simp]
 theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app none = f :=
   Category.id_comp _
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left /-
 @[simp]
 theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right /-
 @[simp]
 theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right
+-/
 
 #print CategoryTheory.Limits.pullbackConeOfRightIsoIsLimit /-
 /-- Verify that the constructed limit cone is indeed a limit. -/
@@ -2064,20 +2244,26 @@ theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ :
 #align category_theory.limits.pushout_cocone_of_left_iso_inr CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr
 -/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none /-
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g := by
   delta pushout_cocone_of_left_iso; simp
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left /-
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_left : (pushoutCoconeOfLeftIso f g).ι.app left = inv f ≫ g :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right /-
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_right : (pushoutCoconeOfLeftIso f g).ι.app right = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right
+-/
 
 #print CategoryTheory.Limits.pushoutCoconeOfLeftIsoIsLimit /-
 /-- Verify that the constructed cocone is indeed a colimit. -/
@@ -2164,21 +2350,27 @@ theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g
 #align category_theory.limits.pushout_cocone_of_right_iso_inr CategoryTheory.Limits.pushoutCoconeOfRightIso_inr
 -/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none /-
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f := by
   delta pushout_cocone_of_right_iso; simp
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left /-
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_left : (pushoutCoconeOfRightIso f g).ι.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right /-
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_right :
     (pushoutCoconeOfRightIso f g).ι.app right = inv g ≫ f :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right
+-/
 
 #print CategoryTheory.Limits.pushoutCoconeOfRightIsoIsLimit /-
 /-- Verify that the constructed cocone is indeed a colimit. -/
@@ -2654,48 +2846,34 @@ variable {X₁ X₂ X₃ Y₁ Y₂ : C} (f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶
 
 variable (f₄ : X₃ ⟶ Y₂) [HasPullback f₁ f₂] [HasPullback f₃ f₄]
 
-include f₁ f₂ f₃ f₄
-
--- mathport name: exprZ₁
 local notation "Z₁" => pullback f₁ f₂
 
--- mathport name: exprZ₂
 local notation "Z₂" => pullback f₃ f₄
 
--- mathport name: exprg₁
 local notation "g₁" => (pullback.fst : Z₁ ⟶ X₁)
 
--- mathport name: exprg₂
 local notation "g₂" => (pullback.snd : Z₁ ⟶ X₂)
 
--- mathport name: exprg₃
 local notation "g₃" => (pullback.fst : Z₂ ⟶ X₂)
 
--- mathport name: exprg₄
 local notation "g₄" => (pullback.snd : Z₂ ⟶ X₃)
 
--- mathport name: exprW
 local notation "W" => pullback (g₂ ≫ f₃) f₄
 
--- mathport name: exprW'
 local notation "W'" => pullback f₁ (g₃ ≫ f₂)
 
--- mathport name: exprl₁
 local notation "l₁" => (pullback.fst : W ⟶ Z₁)
 
--- mathport name: exprl₂
 local notation "l₂" =>
   (pullback.lift (pullback.fst ≫ g₂) pullback.snd
       ((Category.assoc _ _ _).trans pullback.condition) :
     W ⟶ Z₂)
 
--- mathport name: exprl₁'
 local notation "l₁'" =>
   (pullback.lift pullback.fst (pullback.snd ≫ g₃)
       (pullback.condition.trans (Category.assoc _ _ _).symm) :
     W' ⟶ Z₁)
 
--- mathport name: exprl₂'
 local notation "l₂'" => (pullback.snd : W' ⟶ Z₂)
 
 #print CategoryTheory.Limits.pullbackPullbackLeftIsPullback /-
@@ -2891,44 +3069,30 @@ variable {X₁ X₂ X₃ Z₁ Z₂ : C} (g₁ : Z₁ ⟶ X₁) (g₂ : Z₁ ⟶
 
 variable (g₄ : Z₂ ⟶ X₃) [HasPushout g₁ g₂] [HasPushout g₃ g₄]
 
-include g₁ g₂ g₃ g₄
-
--- mathport name: exprY₁
 local notation "Y₁" => pushout g₁ g₂
 
--- mathport name: exprY₂
 local notation "Y₂" => pushout g₃ g₄
 
--- mathport name: exprf₁
 local notation "f₁" => (pushout.inl : X₁ ⟶ Y₁)
 
--- mathport name: exprf₂
 local notation "f₂" => (pushout.inr : X₂ ⟶ Y₁)
 
--- mathport name: exprf₃
 local notation "f₃" => (pushout.inl : X₂ ⟶ Y₂)
 
--- mathport name: exprf₄
 local notation "f₄" => (pushout.inr : X₃ ⟶ Y₂)
 
--- mathport name: exprW
 local notation "W" => pushout g₁ (g₂ ≫ f₃)
 
--- mathport name: exprW'
 local notation "W'" => pushout (g₃ ≫ f₂) g₄
 
--- mathport name: exprl₁
 local notation "l₁" =>
   (pushout.desc pushout.inl (f₃ ≫ pushout.inr) (pushout.condition.trans (Category.assoc _ _ _)) :
     Y₁ ⟶ W)
 
--- mathport name: exprl₂
 local notation "l₂" => (pushout.inr : Y₂ ⟶ W)
 
--- mathport name: exprl₁'
 local notation "l₁'" => (pushout.inl : Y₁ ⟶ W')
 
--- mathport name: exprl₂'
 local notation "l₂'" =>
   (pushout.desc (f₂ ≫ pushout.inl) pushout.inr
       ((Category.assoc _ _ _).symm.trans pushout.condition) :
@@ -3123,17 +3287,21 @@ theorem hasPushouts_of_hasColimit_span
 #align category_theory.limits.has_pushouts_of_has_colimit_span CategoryTheory.Limits.hasPushouts_of_hasColimit_span
 -/
 
+#print CategoryTheory.Limits.walkingSpanOpEquiv /-
 /-- The duality equivalence `walking_spanᵒᵖ ≌ walking_cospan` -/
 @[simps]
 def walkingSpanOpEquiv : WalkingSpanᵒᵖ ≌ WalkingCospan :=
   widePushoutShapeOpEquiv _
 #align category_theory.limits.walking_span_op_equiv CategoryTheory.Limits.walkingSpanOpEquiv
+-/
 
+#print CategoryTheory.Limits.walkingCospanOpEquiv /-
 /-- The duality equivalence `walking_cospanᵒᵖ ≌ walking_span` -/
 @[simps]
 def walkingCospanOpEquiv : WalkingCospanᵒᵖ ≌ WalkingSpan :=
   widePullbackShapeOpEquiv _
 #align category_theory.limits.walking_cospan_op_equiv CategoryTheory.Limits.walkingCospanOpEquiv
+-/
 
 #print CategoryTheory.Limits.hasPullbacks_of_hasWidePullbacks /-
 -- see Note [lower instance priority]
Diff
@@ -2491,7 +2491,7 @@ variable [HasPullback (f' ≫ f) g]
 noncomputable def pullbackRightPullbackFstIso :
     pullback f' (pullback.fst : pullback f g ⟶ _) ≅ pullback (f' ≫ f) g :=
   by
-  let this :=
+  let this.1 :=
     big_square_is_pullback (pullback.snd : pullback f' (pullback.fst : pullback f g ⟶ _) ⟶ _)
       pullback.snd f' f pullback.fst pullback.fst g pullback.condition pullback.condition
       (pullback_is_pullback _ _) (pullback_is_pullback _ _)
Diff
@@ -1902,7 +1902,8 @@ instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫
 #print CategoryTheory.Limits.pullback_snd_iso_of_right_factors_mono /-
 instance pullback_snd_iso_of_right_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.snd : pullback i (f ≫ i) ⟶ _) := by
-  convert(congr_arg is_iso
+  convert
+      (congr_arg is_iso
             (show _ ≫ pullback.snd = _ from
               limit.iso_limit_cone_hom_π ⟨_, pullback_is_pullback_of_comp_mono (𝟙 _) f i⟩
                 walking_cospan.right)).mp
@@ -2002,7 +2003,8 @@ instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i)
 #print CategoryTheory.Limits.pullback_snd_iso_of_left_factors_mono /-
 instance pullback_snd_iso_of_left_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.fst : pullback (f ≫ i) i ⟶ _) := by
-  convert(congr_arg is_iso
+  convert
+      (congr_arg is_iso
             (show _ ≫ pullback.fst = _ from
               limit.iso_limit_cone_hom_π ⟨_, pullback_is_pullback_of_comp_mono f (𝟙 _) i⟩
                 walking_cospan.left)).mp
@@ -2116,7 +2118,8 @@ instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f)
 #print CategoryTheory.Limits.pushout_inr_iso_of_right_factors_epi /-
 instance pushout_inr_iso_of_right_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inr : _ ⟶ pushout h (h ≫ f)) := by
-  convert(congr_arg is_iso
+  convert
+      (congr_arg is_iso
             (show pushout.inr ≫ _ = _ from
               colimit.iso_colimit_cocone_ι_inv ⟨_, pushout_is_pushout_of_epi_comp (𝟙 _) f h⟩
                 walking_span.right)).mp
@@ -2217,7 +2220,8 @@ instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h :
 #print CategoryTheory.Limits.pushout_inl_iso_of_left_factors_epi /-
 instance pushout_inl_iso_of_left_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inl : _ ⟶ pushout (h ≫ f) h) := by
-  convert(congr_arg is_iso
+  convert
+      (congr_arg is_iso
             (show pushout.inl ≫ _ = _ from
               colimit.iso_colimit_cocone_ι_inv ⟨_, pushout_is_pushout_of_epi_comp f (𝟙 _) h⟩
                 walking_span.left)).mp
Diff
@@ -193,9 +193,9 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   apply cones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.π.naturality walking_cospan.hom.inl
-    dsimp at h₁; simp only [category.id_comp] at h₁
+    dsimp at h₁ ; simp only [category.id_comp] at h₁ 
     have h₂ := t.π.naturality walking_cospan.hom.inl
-    dsimp at h₂; simp only [category.id_comp] at h₂
+    dsimp at h₂ ; simp only [category.id_comp] at h₂ 
     simp_rw [h₂, ← category.assoc, ← w₁, ← h₁]
   · exact w₁
   · exact w₂
@@ -211,9 +211,9 @@ def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
   apply cocones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.ι.naturality walking_span.hom.fst
-    dsimp at h₁; simp only [category.comp_id] at h₁
+    dsimp at h₁ ; simp only [category.comp_id] at h₁ 
     have h₂ := t.ι.naturality walking_span.hom.fst
-    dsimp at h₂; simp only [category.comp_id] at h₂
+    dsimp at h₂ ; simp only [category.comp_id] at h₂ 
     simp_rw [← h₁, category.assoc, w₁, h₂]
   · exact w₁
   · exact w₂
@@ -440,7 +440,7 @@ variable {f : X ⟶ Z} {g : Y ⟶ Z} {f' : X' ⟶ Z'} {g' : Y' ⟶ Z'}
 /-- Construct an isomorphism of cospans from components. -/
 def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom) :
     cospan f g ≅ cospan f' g' :=
-  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts[iZ, iX, iY])
+  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts [iZ, iX, iY])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.cospan_ext CategoryTheory.Limits.cospanExt
 -/
@@ -502,7 +502,7 @@ variable {f : X ⟶ Y} {g : X ⟶ Z} {f' : X' ⟶ Y'} {g' : X' ⟶ Z'}
 /-- Construct an isomorphism of spans from components. -/
 def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom) :
     span f g ≅ span f' g' :=
-  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts[iX, iY, iZ])
+  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts [iX, iY, iZ])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.span_ext CategoryTheory.Limits.spanExt
 -/
@@ -600,7 +600,7 @@ theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.s
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
   by
   have w := t.π.naturality walking_cospan.hom.inl
-  dsimp at w; simpa using w
+  dsimp at w ; simpa using w
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
 
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
@@ -614,7 +614,7 @@ def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶
     IsLimit t :=
   { lift
     fac := fun s j =>
-      Option.casesOn j (by rw [← s.w inl, ← t.w inl, ← category.assoc]; congr ; exact fac_left s)
+      Option.casesOn j (by rw [← s.w inl, ← t.w inl, ← category.assoc]; congr; exact fac_left s)
         fun j' => WalkingPair.casesOn j' (fac_left s) (fac_right s)
     uniq := uniq }
 #align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAux
@@ -808,10 +808,10 @@ def isLimitOfFactors (f : X ⟶ Z) (g : Y ⟶ Z) (h : W ⟶ Z) [Mono h] (x : X 
       ⟨hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right, fun r hr hr' =>
         by
         apply pullback_cone.is_limit.hom_ext hs <;>
-              simp only [pullback_cone.mk_fst, pullback_cone.mk_snd] at hr hr'⊢ <;>
+              simp only [pullback_cone.mk_fst, pullback_cone.mk_snd] at hr hr' ⊢ <;>
             simp only [hr, hr'] <;>
           symm
-        exacts[hs.fac _ walking_cospan.left, hs.fac _ walking_cospan.right]⟩⟩
+        exacts [hs.fac _ walking_cospan.left, hs.fac _ walking_cospan.right]⟩⟩
 #align category_theory.limits.pullback_cone.is_limit_of_factors CategoryTheory.Limits.PullbackCone.isLimitOfFactors
 -/
 
@@ -878,7 +878,7 @@ theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.in
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
   by
   have w := t.ι.naturality walking_span.hom.fst
-  dsimp at w; simpa using w.symm
+  dsimp at w ; simpa using w.symm
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
 
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
@@ -1087,10 +1087,10 @@ def isColimitOfFactors (f : X ⟶ Y) (g : X ⟶ Z) (h : X ⟶ W) [Epi h] (x : W
       ⟨hs.fac _ WalkingSpan.left, hs.fac _ WalkingSpan.right, fun r hr hr' =>
         by
         apply pushout_cocone.is_colimit.hom_ext hs <;>
-              simp only [pushout_cocone.mk_inl, pushout_cocone.mk_inr] at hr hr'⊢ <;>
+              simp only [pushout_cocone.mk_inl, pushout_cocone.mk_inr] at hr hr' ⊢ <;>
             simp only [hr, hr'] <;>
           symm
-        exacts[hs.fac _ walking_span.left, hs.fac _ walking_span.right]⟩⟩
+        exacts [hs.fac _ walking_span.left, hs.fac _ walking_span.right]⟩⟩
 #align category_theory.limits.pushout_cocone.is_colimit_of_factors CategoryTheory.Limits.PushoutCocone.isColimitOfFactors
 -/
 
Diff
@@ -183,9 +183,6 @@ open WalkingSpan.Hom WalkingCospan.Hom WidePullbackShape.Hom WidePushoutShape.Ho
 
 variable {C : Type u} [Category.{v} C]
 
-/- warning: category_theory.limits.walking_cospan.ext -> CategoryTheory.Limits.WalkingCospan.ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.extₓ'. -/
 /-- To construct an isomorphism of cones over the walking cospan,
 it suffices to construct an isomorphism
 of the cone points and check it commutes with the legs to `left` and `right`. -/
@@ -204,9 +201,6 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   · exact w₂
 #align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.ext
 
-/- warning: category_theory.limits.walking_span.ext -> CategoryTheory.Limits.WalkingSpan.ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_span.ext CategoryTheory.Limits.WalkingSpan.extₓ'. -/
 /-- To construct an isomorphism of cocones over the walking span,
 it suffices to construct an isomorphism
 of the cocone points and check it commutes with the legs from `left` and `right`. -/
@@ -241,159 +235,75 @@ def span {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : WalkingSpan ⥤ C :=
 #align category_theory.limits.span CategoryTheory.Limits.span
 -/
 
-/- warning: category_theory.limits.cospan_left -> CategoryTheory.Limits.cospan_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) X
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) X
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_left CategoryTheory.Limits.cospan_leftₓ'. -/
 @[simp]
 theorem cospan_left {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.left = X :=
   rfl
 #align category_theory.limits.cospan_left CategoryTheory.Limits.cospan_left
 
-/- warning: category_theory.limits.span_left -> CategoryTheory.Limits.span_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) Y
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) Y
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_left CategoryTheory.Limits.span_leftₓ'. -/
 @[simp]
 theorem span_left {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.left = Y :=
   rfl
 #align category_theory.limits.span_left CategoryTheory.Limits.span_left
 
-/- warning: category_theory.limits.cospan_right -> CategoryTheory.Limits.cospan_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) Y
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) Y
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_right CategoryTheory.Limits.cospan_rightₓ'. -/
 @[simp]
 theorem cospan_right {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).obj WalkingCospan.right = Y :=
   rfl
 #align category_theory.limits.cospan_right CategoryTheory.Limits.cospan_right
 
-/- warning: category_theory.limits.span_right -> CategoryTheory.Limits.span_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) Z
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) Z
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_right CategoryTheory.Limits.span_rightₓ'. -/
 @[simp]
 theorem span_right {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.right = Z :=
   rfl
 #align category_theory.limits.span_right CategoryTheory.Limits.span_right
 
-/- warning: category_theory.limits.cospan_one -> CategoryTheory.Limits.cospan_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) Z
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) Z
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_one CategoryTheory.Limits.cospan_oneₓ'. -/
 @[simp]
 theorem cospan_one {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.one = Z :=
   rfl
 #align category_theory.limits.cospan_one CategoryTheory.Limits.cospan_one
 
-/- warning: category_theory.limits.span_zero -> CategoryTheory.Limits.span_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) X
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) X
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_zero CategoryTheory.Limits.span_zeroₓ'. -/
 @[simp]
 theorem span_zero {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.zero = X :=
   rfl
 #align category_theory.limits.span_zero CategoryTheory.Limits.span_zero
 
-/- warning: category_theory.limits.cospan_map_inl -> CategoryTheory.Limits.cospan_map_inl is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) f
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) f
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_inl CategoryTheory.Limits.cospan_map_inlₓ'. -/
 @[simp]
 theorem cospan_map_inl {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inl = f :=
   rfl
 #align category_theory.limits.cospan_map_inl CategoryTheory.Limits.cospan_map_inl
 
-/- warning: category_theory.limits.span_map_fst -> CategoryTheory.Limits.span_map_fst is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) f
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) f
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_fst CategoryTheory.Limits.span_map_fstₓ'. -/
 @[simp]
 theorem span_map_fst {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.fst = f :=
   rfl
 #align category_theory.limits.span_map_fst CategoryTheory.Limits.span_map_fst
 
-/- warning: category_theory.limits.cospan_map_inr -> CategoryTheory.Limits.cospan_map_inr is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) g
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) g
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_inr CategoryTheory.Limits.cospan_map_inrₓ'. -/
 @[simp]
 theorem cospan_map_inr {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inr = g :=
   rfl
 #align category_theory.limits.cospan_map_inr CategoryTheory.Limits.cospan_map_inr
 
-/- warning: category_theory.limits.span_map_snd -> CategoryTheory.Limits.span_map_snd is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) g
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) g
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_snd CategoryTheory.Limits.span_map_sndₓ'. -/
 @[simp]
 theorem span_map_snd {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.snd = g :=
   rfl
 #align category_theory.limits.span_map_snd CategoryTheory.Limits.span_map_snd
 
-/- warning: category_theory.limits.cospan_map_id -> CategoryTheory.Limits.cospan_map_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) (w : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w w (CategoryTheory.Limits.WalkingCospan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) (w : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w w (CategoryTheory.Limits.WalkingCospan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_id CategoryTheory.Limits.cospan_map_idₓ'. -/
 theorem cospan_map_id {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) (w : WalkingCospan) :
     (cospan f g).map (WalkingCospan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_map_id CategoryTheory.Limits.cospan_map_id
 
-/- warning: category_theory.limits.span_map_id -> CategoryTheory.Limits.span_map_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (w : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w w (CategoryTheory.Limits.WalkingSpan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (w : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w w (CategoryTheory.Limits.WalkingSpan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_idₓ'. -/
 theorem span_map_id {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) (w : WalkingSpan) :
     (span f g).map (WalkingSpan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_id
 
-/- warning: category_theory.limits.diagram_iso_cospan -> CategoryTheory.Limits.diagramIsoCospan is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.diagram_iso_cospan CategoryTheory.Limits.diagramIsoCospanₓ'. -/
 /-- Every diagram indexing an pullback is naturally isomorphic (actually, equal) to a `cospan` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoCospan (F : WalkingCospan ⥤ C) : F ≅ cospan (F.map inl) (F.map inr) :=
   NatIso.ofComponents (fun j => eqToIso (by tidy)) (by tidy)
 #align category_theory.limits.diagram_iso_cospan CategoryTheory.Limits.diagramIsoCospan
 
-/- warning: category_theory.limits.diagram_iso_span -> CategoryTheory.Limits.diagramIsoSpan is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.diagram_iso_span CategoryTheory.Limits.diagramIsoSpanₓ'. -/
 /-- Every diagram indexing a pushout is naturally isomorphic (actually, equal) to a `span` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoSpan (F : WalkingSpan ⥤ C) : F ≅ span (F.map fst) (F.map snd) :=
@@ -402,12 +312,6 @@ def diagramIsoSpan (F : WalkingSpan ⥤ C) : F ≅ span (F.map fst) (F.map snd)
 
 variable {D : Type u₂} [Category.{v₂} D]
 
-/- warning: category_theory.limits.cospan_comp_iso -> CategoryTheory.Limits.cospanCompIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), CategoryTheory.Iso.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), CategoryTheory.Iso.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso CategoryTheory.Limits.cospanCompIsoₓ'. -/
 /-- A functor applied to a cospan is a cospan. -/
 def cospanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     cospan f g ⋙ F ≅ cospan (F.map f) (F.map g) :=
@@ -419,73 +323,46 @@ section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
 
-/- warning: category_theory.limits.cospan_comp_iso_app_left -> CategoryTheory.Limits.cospanCompIso_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_app_left : (cospanCompIso F f g).app WalkingCospan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_left
 
-/- warning: category_theory.limits.cospan_comp_iso_app_right -> CategoryTheory.Limits.cospanCompIso_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_app_right : (cospanCompIso F f g).app WalkingCospan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_right
 
-/- warning: category_theory.limits.cospan_comp_iso_app_one -> CategoryTheory.Limits.cospanCompIso_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_app_one : (cospanCompIso F f g).app WalkingCospan.one = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_one
 
-/- warning: category_theory.limits.cospan_comp_iso_hom_app_left -> CategoryTheory.Limits.cospanCompIso_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_left : (cospanCompIso F f g).Hom.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_left
 
-/- warning: category_theory.limits.cospan_comp_iso_hom_app_right -> CategoryTheory.Limits.cospanCompIso_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_right : (cospanCompIso F f g).Hom.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_right
 
-/- warning: category_theory.limits.cospan_comp_iso_hom_app_one -> CategoryTheory.Limits.cospanCompIso_hom_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_one : (cospanCompIso F f g).Hom.app WalkingCospan.one = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_one
 
-/- warning: category_theory.limits.cospan_comp_iso_inv_app_left -> CategoryTheory.Limits.cospanCompIso_inv_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_left : (cospanCompIso F f g).inv.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_left
 
-/- warning: category_theory.limits.cospan_comp_iso_inv_app_right -> CategoryTheory.Limits.cospanCompIso_inv_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_right : (cospanCompIso F f g).inv.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_right
 
-/- warning: category_theory.limits.cospan_comp_iso_inv_app_one -> CategoryTheory.Limits.cospanCompIso_inv_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_one CategoryTheory.Limits.cospanCompIso_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.one = 𝟙 _ :=
   rfl
@@ -493,12 +370,6 @@ theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.
 
 end
 
-/- warning: category_theory.limits.span_comp_iso -> CategoryTheory.Limits.spanCompIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), CategoryTheory.Iso.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), CategoryTheory.Iso.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso CategoryTheory.Limits.spanCompIsoₓ'. -/
 /-- A functor applied to a span is a span. -/
 def spanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) :
     span f g ⋙ F ≅ span (F.map f) (F.map g) :=
@@ -510,73 +381,46 @@ section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
 
-/- warning: category_theory.limits.span_comp_iso_app_left -> CategoryTheory.Limits.spanCompIso_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_app_left : (spanCompIso F f g).app WalkingSpan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_left
 
-/- warning: category_theory.limits.span_comp_iso_app_right -> CategoryTheory.Limits.spanCompIso_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_app_right : (spanCompIso F f g).app WalkingSpan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_right
 
-/- warning: category_theory.limits.span_comp_iso_app_zero -> CategoryTheory.Limits.spanCompIso_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_app_zero : (spanCompIso F f g).app WalkingSpan.zero = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zero
 
-/- warning: category_theory.limits.span_comp_iso_hom_app_left -> CategoryTheory.Limits.spanCompIso_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_left : (spanCompIso F f g).Hom.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_left
 
-/- warning: category_theory.limits.span_comp_iso_hom_app_right -> CategoryTheory.Limits.spanCompIso_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_right : (spanCompIso F f g).Hom.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_right
 
-/- warning: category_theory.limits.span_comp_iso_hom_app_zero -> CategoryTheory.Limits.spanCompIso_hom_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_zero : (spanCompIso F f g).Hom.app WalkingSpan.zero = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zero
 
-/- warning: category_theory.limits.span_comp_iso_inv_app_left -> CategoryTheory.Limits.spanCompIso_inv_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_left : (spanCompIso F f g).inv.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_left
 
-/- warning: category_theory.limits.span_comp_iso_inv_app_right -> CategoryTheory.Limits.spanCompIso_inv_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_right : (spanCompIso F f g).inv.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_right
 
-/- warning: category_theory.limits.span_comp_iso_inv_app_zero -> CategoryTheory.Limits.spanCompIso_inv_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_zero CategoryTheory.Limits.spanCompIso_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_zero : (spanCompIso F f g).inv.app WalkingSpan.zero = 𝟙 _ :=
   rfl
@@ -603,73 +447,46 @@ def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ
 
 variable (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom)
 
-/- warning: category_theory.limits.cospan_ext_app_left -> CategoryTheory.Limits.cospanExt_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_left
 
-/- warning: category_theory.limits.cospan_ext_app_right -> CategoryTheory.Limits.cospanExt_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_right
 
-/- warning: category_theory.limits.cospan_ext_app_one -> CategoryTheory.Limits.cospanExt_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_one
 
-/- warning: category_theory.limits.cospan_ext_hom_app_left -> CategoryTheory.Limits.cospanExt_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.left = iX.Hom :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_left
 
-/- warning: category_theory.limits.cospan_ext_hom_app_right -> CategoryTheory.Limits.cospanExt_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.right = iY.Hom :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_right
 
-/- warning: category_theory.limits.cospan_ext_hom_app_one -> CategoryTheory.Limits.cospanExt_hom_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom := by
   dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_one
 
-/- warning: category_theory.limits.cospan_ext_inv_app_left -> CategoryTheory.Limits.cospanExt_inv_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.left = iX.inv :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_left
 
-/- warning: category_theory.limits.cospan_ext_inv_app_right -> CategoryTheory.Limits.cospanExt_inv_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.right = iY.inv :=
   by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_right
 
-/- warning: category_theory.limits.cospan_ext_inv_app_one -> CategoryTheory.Limits.cospanExt_inv_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv := by
   dsimp [cospan_ext]; simp
@@ -692,73 +509,46 @@ def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.H
 
 variable (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom)
 
-/- warning: category_theory.limits.span_ext_app_left -> CategoryTheory.Limits.spanExt_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_leftₓ'. -/
 @[simp]
 theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_left
 
-/- warning: category_theory.limits.span_ext_app_right -> CategoryTheory.Limits.spanExt_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_rightₓ'. -/
 @[simp]
 theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_right
 
-/- warning: category_theory.limits.span_ext_app_one -> CategoryTheory.Limits.spanExt_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_oneₓ'. -/
 @[simp]
 theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX := by dsimp [span_ext];
   simp
 #align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_one
 
-/- warning: category_theory.limits.span_ext_hom_app_left -> CategoryTheory.Limits.spanExt_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_left
 
-/- warning: category_theory.limits.span_ext_hom_app_right -> CategoryTheory.Limits.spanExt_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_right
 
-/- warning: category_theory.limits.span_ext_hom_app_zero -> CategoryTheory.Limits.spanExt_hom_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zero
 
-/- warning: category_theory.limits.span_ext_inv_app_left -> CategoryTheory.Limits.spanExt_inv_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_left
 
-/- warning: category_theory.limits.span_ext_inv_app_right -> CategoryTheory.Limits.spanExt_inv_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv := by
   dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_right
 
-/- warning: category_theory.limits.span_ext_inv_app_zero -> CategoryTheory.Limits.spanExt_inv_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv := by
   dsimp [span_ext]; simp
@@ -796,31 +586,16 @@ abbrev snd (t : PullbackCone f g) : t.pt ⟶ Y :=
 #align category_theory.limits.pullback_cone.snd CategoryTheory.Limits.PullbackCone.snd
 -/
 
-/- warning: category_theory.limits.pullback_cone.π_app_left -> CategoryTheory.Limits.PullbackCone.π_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g c)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g c)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.π_app_left CategoryTheory.Limits.PullbackCone.π_app_leftₓ'. -/
 @[simp]
 theorem π_app_left (c : PullbackCone f g) : c.π.app WalkingCospan.left = c.fst :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_left CategoryTheory.Limits.PullbackCone.π_app_left
 
-/- warning: category_theory.limits.pullback_cone.π_app_right -> CategoryTheory.Limits.PullbackCone.π_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g c)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g c)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_rightₓ'. -/
 @[simp]
 theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.snd :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_right
 
-/- warning: category_theory.limits.pullback_cone.condition_one -> CategoryTheory.Limits.PullbackCone.condition_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_oneₓ'. -/
 @[simp]
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
   by
@@ -828,9 +603,6 @@ theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fs
   dsimp at w; simpa using w
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
 
-/- warning: category_theory.limits.pullback_cone.is_limit_aux -> CategoryTheory.Limits.PullbackCone.isLimitAux is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content -/
 def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶ t.pt)
@@ -875,27 +647,18 @@ def mk {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) : Pu
 #align category_theory.limits.pullback_cone.mk CategoryTheory.Limits.PullbackCone.mk
 -/
 
-/- warning: category_theory.limits.pullback_cone.mk_π_app_left -> CategoryTheory.Limits.PullbackCone.mk_π_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_leftₓ'. -/
 @[simp]
 theorem mk_π_app_left {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.left = fst :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_left
 
-/- warning: category_theory.limits.pullback_cone.mk_π_app_right -> CategoryTheory.Limits.PullbackCone.mk_π_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_rightₓ'. -/
 @[simp]
 theorem mk_π_app_right {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.right = snd :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_right
 
-/- warning: category_theory.limits.pullback_cone.mk_π_app_one -> CategoryTheory.Limits.PullbackCone.mk_π_app_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_one CategoryTheory.Limits.PullbackCone.mk_π_app_oneₓ'. -/
 @[simp]
 theorem mk_π_app_one {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.one = fst ≫ f :=
@@ -925,9 +688,6 @@ theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
 #align category_theory.limits.pullback_cone.condition CategoryTheory.Limits.PullbackCone.condition
 -/
 
-/- warning: category_theory.limits.pullback_cone.equalizer_ext -> CategoryTheory.Limits.PullbackCone.equalizer_ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_extₓ'. -/
 /-- To check whether a morphism is equalized by the maps of a pullback cone, it suffices to check
   it for `fst t` and `snd t` -/
 theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ : k ≫ fst t = l ≫ fst t)
@@ -1104,31 +864,16 @@ abbrev inr (t : PushoutCocone f g) : Z ⟶ t.pt :=
 #align category_theory.limits.pushout_cocone.inr CategoryTheory.Limits.PushoutCocone.inr
 -/
 
-/- warning: category_theory.limits.pushout_cocone.ι_app_left -> CategoryTheory.Limits.PushoutCocone.ι_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g c)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g c)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.ι_app_left CategoryTheory.Limits.PushoutCocone.ι_app_leftₓ'. -/
 @[simp]
 theorem ι_app_left (c : PushoutCocone f g) : c.ι.app WalkingSpan.left = c.inl :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_left CategoryTheory.Limits.PushoutCocone.ι_app_left
 
-/- warning: category_theory.limits.pushout_cocone.ι_app_right -> CategoryTheory.Limits.PushoutCocone.ι_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g c)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g c)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_rightₓ'. -/
 @[simp]
 theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.inr :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_right
 
-/- warning: category_theory.limits.pushout_cocone.condition_zero -> CategoryTheory.Limits.PushoutCocone.condition_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zeroₓ'. -/
 @[simp]
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
   by
@@ -1136,9 +881,6 @@ theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f 
   dsimp at w; simpa using w.symm
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
 
-/- warning: category_theory.limits.pushout_cocone.is_colimit_aux -> CategoryTheory.Limits.PushoutCocone.isColimitAux is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
     It only asks for a proof of facts that carry any mathematical content -/
 def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt ⟶ s.pt)
@@ -1182,27 +924,18 @@ def mk {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) : Pu
 #align category_theory.limits.pushout_cocone.mk CategoryTheory.Limits.PushoutCocone.mk
 -/
 
-/- warning: category_theory.limits.pushout_cocone.mk_ι_app_left -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_leftₓ'. -/
 @[simp]
 theorem mk_ι_app_left {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.left = inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_left
 
-/- warning: category_theory.limits.pushout_cocone.mk_ι_app_right -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_rightₓ'. -/
 @[simp]
 theorem mk_ι_app_right {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.right = inr :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_right
 
-/- warning: category_theory.limits.pushout_cocone.mk_ι_app_zero -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_zero CategoryTheory.Limits.PushoutCocone.mk_ι_app_zeroₓ'. -/
 @[simp]
 theorem mk_ι_app_zero {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.zero = f ≫ inl :=
@@ -1232,9 +965,6 @@ theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
 #align category_theory.limits.pushout_cocone.condition CategoryTheory.Limits.PushoutCocone.condition
 -/
 
-/- warning: category_theory.limits.pushout_cocone.coequalizer_ext -> CategoryTheory.Limits.PushoutCocone.coequalizer_ext is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_extₓ'. -/
 /-- To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check
   it for `inl t` and `inr t` -/
 theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
@@ -1387,12 +1117,6 @@ def isColimitOfEpiComp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h] (s : Pu
 
 end PushoutCocone
 
-/- warning: category_theory.limits.cone.of_pullback_cone -> CategoryTheory.Limits.Cone.ofPullbackCone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) -> (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) -> (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackConeₓ'. -/
 /-- This is a helper construction that can be useful when verifying that a category has all
     pullbacks. Given `F : walking_cospan ⥤ C`, which is really the same as
     `cospan (F.map inl) (F.map inr)`, and a pullback cone on `F.map inl` and `F.map inr`, we
@@ -1407,12 +1131,6 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
   π := t.π ≫ (diagramIsoCospan F).inv
 #align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackCone
 
-/- warning: category_theory.limits.cocone.of_pushout_cocone -> CategoryTheory.Limits.Cocone.ofPushoutCocone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) -> (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) -> (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCoconeₓ'. -/
 /-- This is a helper construction that can be useful when verifying that a category has all
     pushout. Given `F : walking_span ⥤ C`, which is really the same as
     `span (F.map fst) (F.mal snd)`, and a pushout cocone on `F.map fst` and `F.map snd`,
@@ -1427,12 +1145,6 @@ def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst
   ι := (diagramIsoSpan F).Hom ≫ t.ι
 #align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCocone
 
-/- warning: category_theory.limits.pullback_cone.of_cone -> CategoryTheory.Limits.PullbackCone.ofCone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofConeₓ'. -/
 /-- Given `F : walking_cospan ⥤ C`, which is really the same as `cospan (F.map inl) (F.map inr)`,
     and a cone on `F`, we get a pullback cone on `F.map inl` and `F.map inr`. -/
 @[simps]
@@ -1442,9 +1154,6 @@ def PullbackCone.ofCone {F : WalkingCospan ⥤ C} (t : Cone F) : PullbackCone (F
   π := t.π ≫ (diagramIsoCospan F).Hom
 #align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofCone
 
-/- warning: category_theory.limits.pullback_cone.iso_mk -> CategoryTheory.Limits.PullbackCone.isoMk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMkₓ'. -/
 /-- A diagram `walking_cospan ⥤ C` is isomorphic to some `pullback_cone.mk` after
 composing with `diagram_iso_cospan`. -/
 @[simps]
@@ -1455,12 +1164,6 @@ def PullbackCone.isoMk {F : WalkingCospan ⥤ C} (t : Cone F) :
   Cones.ext (Iso.refl _) <| by rintro (_ | (_ | _)) <;> · dsimp; simp
 #align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMk
 
-/- warning: category_theory.limits.pushout_cocone.of_cocone -> CategoryTheory.Limits.PushoutCocone.ofCocone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCoconeₓ'. -/
 /-- Given `F : walking_span ⥤ C`, which is really the same as `span (F.map fst) (F.map snd)`,
     and a cocone on `F`, we get a pushout cocone on `F.map fst` and `F.map snd`. -/
 @[simps]
@@ -1471,9 +1174,6 @@ def PushoutCocone.ofCocone {F : WalkingSpan ⥤ C} (t : Cocone F) :
   ι := (diagramIsoSpan F).inv ≫ t.ι
 #align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCocone
 
-/- warning: category_theory.limits.pushout_cocone.iso_mk -> CategoryTheory.Limits.PushoutCocone.isoMk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMkₓ'. -/
 /-- A diagram `walking_span ⥤ C` is isomorphic to some `pushout_cocone.mk` after composing with
 `diagram_iso_span`. -/
 @[simps]
@@ -1919,12 +1619,6 @@ section
 
 variable (G : C ⥤ D)
 
-/- warning: category_theory.limits.pullback_comparison -> CategoryTheory.Limits.pullbackComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparisonₓ'. -/
 /-- The comparison morphism for the pullback of `f,g`.
 This is an isomorphism iff `G` preserves the pullback of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1935,9 +1629,6 @@ def pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] [HasPullbac
     (by simp only [← G.map_comp, pullback.condition])
 #align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparison
 
-/- warning: category_theory.limits.pullback_comparison_comp_fst -> CategoryTheory.Limits.pullbackComparison_comp_fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fstₓ'. -/
 @[simp, reassoc]
 theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
@@ -1945,9 +1636,6 @@ theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fst
 
-/- warning: category_theory.limits.pullback_comparison_comp_snd -> CategoryTheory.Limits.pullbackComparison_comp_snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_sndₓ'. -/
 @[simp, reassoc]
 theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
@@ -1955,9 +1643,6 @@ theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   pullback.lift_snd _ _ _
 #align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_snd
 
-/- warning: category_theory.limits.map_lift_pullback_comparison -> CategoryTheory.Limits.map_lift_pullbackComparison is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparisonₓ'. -/
 @[simp, reassoc]
 theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] {W : C} {h : W ⟶ X} {k : W ⟶ Y} (w : h ≫ f = k ≫ g) :
@@ -1966,12 +1651,6 @@ theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   by ext <;> simp [← G.map_comp]
 #align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparison
 
-/- warning: category_theory.limits.pushout_comparison -> CategoryTheory.Limits.pushoutComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparisonₓ'. -/
 /-- The comparison morphism for the pushout of `f,g`.
 This is an isomorphism iff `G` preserves the pushout of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1982,27 +1661,18 @@ def pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] [HasPushout (
     (by simp only [← G.map_comp, pushout.condition])
 #align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparison
 
-/- warning: category_theory.limits.inl_comp_pushout_comparison -> CategoryTheory.Limits.inl_comp_pushoutComparison is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc]
 theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inl ≫ pushoutComparison G f g = G.map pushout.inl :=
   pushout.inl_desc _ _ _
 #align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparison
 
-/- warning: category_theory.limits.inr_comp_pushout_comparison -> CategoryTheory.Limits.inr_comp_pushoutComparison is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc]
 theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inr ≫ pushoutComparison G f g = G.map pushout.inr :=
   pushout.inr_desc _ _ _
 #align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparison
 
-/- warning: category_theory.limits.pushout_comparison_map_desc -> CategoryTheory.Limits.pushoutComparison_map_desc is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_descₓ'. -/
 @[simp, reassoc]
 theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] {W : C} {h : Y ⟶ W} {k : Z ⟶ W} (w : f ≫ h = g ≫ k) :
@@ -2178,25 +1848,16 @@ theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ :=
 #align category_theory.limits.pullback_cone_of_left_iso_snd CategoryTheory.Limits.pullbackConeOfLeftIso_snd
 -/
 
-/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g := by
   delta pullback_cone_of_left_iso; simp
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
 
-/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_left : (pullbackConeOfLeftIso f g).π.app left = g ≫ inv f :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left
 
-/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_right CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_right : (pullbackConeOfLeftIso f g).π.app right = 𝟙 _ :=
   rfl
@@ -2286,25 +1947,16 @@ theorem pullbackConeOfRightIso_snd : (pullbackConeOfRightIso f g).snd = f ≫ in
 #align category_theory.limits.pullback_cone_of_right_iso_snd CategoryTheory.Limits.pullbackConeOfRightIso_snd
 -/
 
-/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app none = f :=
   Category.id_comp _
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none
 
-/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
 
-/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g :=
   rfl
@@ -2410,25 +2062,16 @@ theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ :
 #align category_theory.limits.pushout_cocone_of_left_iso_inr CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr
 -/
 
-/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g := by
   delta pushout_cocone_of_left_iso; simp
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
 
-/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_left : (pushoutCoconeOfLeftIso f g).ι.app left = inv f ≫ g :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left
 
-/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_right : (pushoutCoconeOfLeftIso f g).ι.app right = 𝟙 _ :=
   rfl
@@ -2518,25 +2161,16 @@ theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g
 #align category_theory.limits.pushout_cocone_of_right_iso_inr CategoryTheory.Limits.pushoutCoconeOfRightIso_inr
 -/
 
-/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f := by
   delta pushout_cocone_of_right_iso; simp
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
 
-/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_left : (pushoutCoconeOfRightIso f g).ι.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left
 
-/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_right :
     (pushoutCoconeOfRightIso f g).ι.app right = inv g ≫ f :=
@@ -3485,24 +3119,12 @@ theorem hasPushouts_of_hasColimit_span
 #align category_theory.limits.has_pushouts_of_has_colimit_span CategoryTheory.Limits.hasPushouts_of_hasColimit_span
 -/
 
-/- warning: category_theory.limits.walking_span_op_equiv -> CategoryTheory.Limits.walkingSpanOpEquiv is a dubious translation:
-lean 3 declaration is
-  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingSpan) (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)
-but is expected to have type
-  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingSpan) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_span_op_equiv CategoryTheory.Limits.walkingSpanOpEquivₓ'. -/
 /-- The duality equivalence `walking_spanᵒᵖ ≌ walking_cospan` -/
 @[simps]
 def walkingSpanOpEquiv : WalkingSpanᵒᵖ ≌ WalkingCospan :=
   widePushoutShapeOpEquiv _
 #align category_theory.limits.walking_span_op_equiv CategoryTheory.Limits.walkingSpanOpEquiv
 
-/- warning: category_theory.limits.walking_cospan_op_equiv -> CategoryTheory.Limits.walkingCospanOpEquiv is a dubious translation:
-lean 3 declaration is
-  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingCospan) (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)
-but is expected to have type
-  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingCospan) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)
-Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_cospan_op_equiv CategoryTheory.Limits.walkingCospanOpEquivₓ'. -/
 /-- The duality equivalence `walking_cospanᵒᵖ ≌ walking_span` -/
 @[simps]
 def walkingCospanOpEquiv : WalkingCospanᵒᵖ ≌ WalkingSpan :=
Diff
@@ -196,11 +196,9 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   apply cones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.π.naturality walking_cospan.hom.inl
-    dsimp at h₁
-    simp only [category.id_comp] at h₁
+    dsimp at h₁; simp only [category.id_comp] at h₁
     have h₂ := t.π.naturality walking_cospan.hom.inl
-    dsimp at h₂
-    simp only [category.id_comp] at h₂
+    dsimp at h₂; simp only [category.id_comp] at h₂
     simp_rw [h₂, ← category.assoc, ← w₁, ← h₁]
   · exact w₁
   · exact w₂
@@ -219,11 +217,9 @@ def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
   apply cocones.ext i
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.ι.naturality walking_span.hom.fst
-    dsimp at h₁
-    simp only [category.comp_id] at h₁
+    dsimp at h₁; simp only [category.comp_id] at h₁
     have h₂ := t.ι.naturality walking_span.hom.fst
-    dsimp at h₂
-    simp only [category.comp_id] at h₂
+    dsimp at h₂; simp only [category.comp_id] at h₂
     simp_rw [← h₁, category.assoc, w₁, h₂]
   · exact w₁
   · exact w₂
@@ -600,10 +596,7 @@ variable {f : X ⟶ Z} {g : Y ⟶ Z} {f' : X' ⟶ Z'} {g' : Y' ⟶ Z'}
 /-- Construct an isomorphism of cospans from components. -/
 def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom) :
     cospan f g ≅ cospan f' g' :=
-  NatIso.ofComponents
-    (by
-      rintro (⟨⟩ | ⟨⟨⟩⟩)
-      exacts[iZ, iX, iY])
+  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts[iZ, iX, iY])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.cospan_ext CategoryTheory.Limits.cospanExt
 -/
@@ -614,30 +607,24 @@ variable (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom)
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_leftₓ'. -/
 @[simp]
-theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX :=
-  by
-  dsimp [cospan_ext]
-  simp
+theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX := by
+  dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_left
 
 /- warning: category_theory.limits.cospan_ext_app_right -> CategoryTheory.Limits.cospanExt_app_right is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_rightₓ'. -/
 @[simp]
-theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY :=
-  by
-  dsimp [cospan_ext]
-  simp
+theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY := by
+  dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_right
 
 /- warning: category_theory.limits.cospan_ext_app_one -> CategoryTheory.Limits.cospanExt_app_one is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_oneₓ'. -/
 @[simp]
-theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ :=
-  by
-  dsimp [cospan_ext]
-  simp
+theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ := by
+  dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_one
 
 /- warning: category_theory.limits.cospan_ext_hom_app_left -> CategoryTheory.Limits.cospanExt_hom_app_left is a dubious translation:
@@ -645,9 +632,7 @@ theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = i
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.left = iX.Hom :=
-  by
-  dsimp [cospan_ext]
-  simp
+  by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_left
 
 /- warning: category_theory.limits.cospan_ext_hom_app_right -> CategoryTheory.Limits.cospanExt_hom_app_right is a dubious translation:
@@ -655,19 +640,15 @@ theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospa
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.right = iY.Hom :=
-  by
-  dsimp [cospan_ext]
-  simp
+  by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_right
 
 /- warning: category_theory.limits.cospan_ext_hom_app_one -> CategoryTheory.Limits.cospanExt_hom_app_one is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_oneₓ'. -/
 @[simp]
-theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom :=
-  by
-  dsimp [cospan_ext]
-  simp
+theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom := by
+  dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_one
 
 /- warning: category_theory.limits.cospan_ext_inv_app_left -> CategoryTheory.Limits.cospanExt_inv_app_left is a dubious translation:
@@ -675,9 +656,7 @@ theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.left = iX.inv :=
-  by
-  dsimp [cospan_ext]
-  simp
+  by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_left
 
 /- warning: category_theory.limits.cospan_ext_inv_app_right -> CategoryTheory.Limits.cospanExt_inv_app_right is a dubious translation:
@@ -685,19 +664,15 @@ theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospa
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.right = iY.inv :=
-  by
-  dsimp [cospan_ext]
-  simp
+  by dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_right
 
 /- warning: category_theory.limits.cospan_ext_inv_app_one -> CategoryTheory.Limits.cospanExt_inv_app_one is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_oneₓ'. -/
 @[simp]
-theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv :=
-  by
-  dsimp [cospan_ext]
-  simp
+theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv := by
+  dsimp [cospan_ext]; simp
 #align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_one
 
 end
@@ -710,10 +685,7 @@ variable {f : X ⟶ Y} {g : X ⟶ Z} {f' : X' ⟶ Y'} {g' : X' ⟶ Z'}
 /-- Construct an isomorphism of spans from components. -/
 def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom) :
     span f g ≅ span f' g' :=
-  NatIso.ofComponents
-    (by
-      rintro (⟨⟩ | ⟨⟨⟩⟩)
-      exacts[iX, iY, iZ])
+  NatIso.ofComponents (by rintro (⟨⟩ | ⟨⟨⟩⟩); exacts[iX, iY, iZ])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.span_ext CategoryTheory.Limits.spanExt
 -/
@@ -724,29 +696,23 @@ variable (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom)
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_leftₓ'. -/
 @[simp]
-theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_left
 
 /- warning: category_theory.limits.span_ext_app_right -> CategoryTheory.Limits.spanExt_app_right is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_rightₓ'. -/
 @[simp]
-theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_right
 
 /- warning: category_theory.limits.span_ext_app_one -> CategoryTheory.Limits.spanExt_app_one is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_oneₓ'. -/
 @[simp]
-theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
-  by
-  dsimp [span_ext]
+theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX := by dsimp [span_ext];
   simp
 #align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_one
 
@@ -754,60 +720,48 @@ theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_leftₓ'. -/
 @[simp]
-theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_left
 
 /- warning: category_theory.limits.span_ext_hom_app_right -> CategoryTheory.Limits.spanExt_hom_app_right is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_rightₓ'. -/
 @[simp]
-theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_right
 
 /- warning: category_theory.limits.span_ext_hom_app_zero -> CategoryTheory.Limits.spanExt_hom_app_zero is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zeroₓ'. -/
 @[simp]
-theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zero
 
 /- warning: category_theory.limits.span_ext_inv_app_left -> CategoryTheory.Limits.spanExt_inv_app_left is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_leftₓ'. -/
 @[simp]
-theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_left
 
 /- warning: category_theory.limits.span_ext_inv_app_right -> CategoryTheory.Limits.spanExt_inv_app_right is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_rightₓ'. -/
 @[simp]
-theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_right
 
 /- warning: category_theory.limits.span_ext_inv_app_zero -> CategoryTheory.Limits.spanExt_inv_app_zero is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zeroₓ'. -/
 @[simp]
-theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv :=
-  by
-  dsimp [span_ext]
-  simp
+theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv := by
+  dsimp [span_ext]; simp
 #align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zero
 
 end
@@ -888,11 +842,7 @@ def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶
     IsLimit t :=
   { lift
     fac := fun s j =>
-      Option.casesOn j
-        (by
-          rw [← s.w inl, ← t.w inl, ← category.assoc]
-          congr
-          exact fac_left s)
+      Option.casesOn j (by rw [← s.w inl, ← t.w inl, ← category.assoc]; congr ; exact fac_left s)
         fun j' => WalkingPair.casesOn j' (fac_left s) (fac_right s)
     uniq := uniq }
 #align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAux
@@ -1078,9 +1028,7 @@ given in `pullback_cone.is_id_of_mono`.
 -/
 theorem mono_of_isLimitMkIdId (f : X ⟶ Y) (t : IsLimit (mk (𝟙 X) (𝟙 X) rfl : PullbackCone f f)) :
     Mono f :=
-  ⟨fun Z g h eq => by
-    rcases pullback_cone.is_limit.lift' t _ _ Eq with ⟨_, rfl, rfl⟩
-    rfl⟩
+  ⟨fun Z g h eq => by rcases pullback_cone.is_limit.lift' t _ _ Eq with ⟨_, rfl, rfl⟩; rfl⟩
 #align category_theory.limits.pullback_cone.mono_of_is_limit_mk_id_id CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId
 -/
 
@@ -1387,10 +1335,7 @@ The converse is given in `pushout_cocone.is_colimit_mk_id_id`.
 -/
 theorem epi_of_isColimitMkIdId (f : X ⟶ Y)
     (t : IsColimit (mk (𝟙 Y) (𝟙 Y) rfl : PushoutCocone f f)) : Epi f :=
-  ⟨fun Z g h eq =>
-    by
-    rcases pushout_cocone.is_colimit.desc' t _ _ Eq with ⟨_, rfl, rfl⟩
-    rfl⟩
+  ⟨fun Z g h eq => by rcases pushout_cocone.is_colimit.desc' t _ _ Eq with ⟨_, rfl, rfl⟩; rfl⟩
 #align category_theory.limits.pushout_cocone.epi_of_is_colimit_mk_id_id CategoryTheory.Limits.PushoutCocone.epi_of_isColimitMkIdId
 -/
 
@@ -1507,10 +1452,7 @@ def PullbackCone.isoMk {F : WalkingCospan ⥤ C} (t : Cone F) :
     (Cones.postcompose (diagramIsoCospan.{v} _).Hom).obj t ≅
       PullbackCone.mk (t.π.app WalkingCospan.left) (t.π.app WalkingCospan.right)
         ((t.π.naturality inl).symm.trans (t.π.naturality inr : _)) :=
-  Cones.ext (Iso.refl _) <| by
-    rintro (_ | (_ | _)) <;>
-      · dsimp
-        simp
+  Cones.ext (Iso.refl _) <| by rintro (_ | (_ | _)) <;> · dsimp; simp
 #align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMk
 
 /- warning: category_theory.limits.pushout_cocone.of_cocone -> CategoryTheory.Limits.PushoutCocone.ofCocone is a dubious translation:
@@ -1539,10 +1481,7 @@ def PushoutCocone.isoMk {F : WalkingSpan ⥤ C} (t : Cocone F) :
     (Cocones.precompose (diagramIsoSpan.{v} _).inv).obj t ≅
       PushoutCocone.mk (t.ι.app WalkingSpan.left) (t.ι.app WalkingSpan.right)
         ((t.ι.naturality fst).trans (t.ι.naturality snd).symm) :=
-  Cocones.ext (Iso.refl _) <| by
-    rintro (_ | (_ | _)) <;>
-      · dsimp
-        simp
+  Cocones.ext (Iso.refl _) <| by rintro (_ | (_ | _)) <;> · dsimp; simp
 #align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMk
 
 #print CategoryTheory.Limits.HasPullback /-
@@ -1761,9 +1700,7 @@ abbrev pushout.map {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [HasPusho
     (g₂ : T ⟶ Z) [HasPushout g₁ g₂] (i₁ : W ⟶ Y) (i₂ : X ⟶ Z) (i₃ : S ⟶ T) (eq₁ : f₁ ≫ i₁ = i₃ ≫ g₁)
     (eq₂ : f₂ ≫ i₂ = i₃ ≫ g₂) : pushout f₁ f₂ ⟶ pushout g₁ g₂ :=
   pushout.desc (i₁ ≫ pushout.inl) (i₂ ≫ pushout.inr)
-    (by
-      simp only [← category.assoc, eq₁, eq₂]
-      simp [pushout.condition])
+    (by simp only [← category.assoc, eq₁, eq₂]; simp [pushout.condition])
 #align category_theory.limits.pushout.map CategoryTheory.Limits.pushout.map
 -/
 
@@ -2245,10 +2182,8 @@ theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ :=
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_noneₓ'. -/
 @[simp]
-theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g :=
-  by
-  delta pullback_cone_of_left_iso
-  simp
+theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g := by
+  delta pullback_cone_of_left_iso; simp
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
 
 /- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left is a dubious translation:
@@ -2295,11 +2230,10 @@ instance pullback_snd_iso_of_left_iso : IsIso (pullback.snd : pullback f g ⟶ _
 variable (i : Z ⟶ W) [Mono i]
 
 #print CategoryTheory.Limits.hasPullback_of_right_factors_mono /-
-instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫ i) :=
-  by
+instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫ i) := by
   conv =>
     congr
-    rw [← category.id_comp i]
+    rw [← category.id_comp i];
   infer_instance
 #align category_theory.limits.has_pullback_of_right_factors_mono CategoryTheory.Limits.hasPullback_of_right_factors_mono
 -/
@@ -2404,12 +2338,11 @@ instance pullback_snd_iso_of_right_iso : IsIso (pullback.fst : pullback f g ⟶
 variable (i : Z ⟶ W) [Mono i]
 
 #print CategoryTheory.Limits.hasPullback_of_left_factors_mono /-
-instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i) i :=
-  by
+instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i) i := by
   conv =>
     congr
     skip
-    rw [← category.id_comp i]
+    rw [← category.id_comp i];
   infer_instance
 #align category_theory.limits.has_pullback_of_left_factors_mono CategoryTheory.Limits.hasPullback_of_left_factors_mono
 -/
@@ -2481,10 +2414,8 @@ theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ :
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_noneₓ'. -/
 @[simp]
-theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g :=
-  by
-  delta pushout_cocone_of_left_iso
-  simp
+theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g := by
+  delta pushout_cocone_of_left_iso; simp
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
 
 /- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left is a dubious translation:
@@ -2531,11 +2462,10 @@ instance pushout_inr_iso_of_left_iso : IsIso (pushout.inr : _ ⟶ pushout f g) :
 variable (h : W ⟶ X) [Epi h]
 
 #print CategoryTheory.Limits.hasPushout_of_right_factors_epi /-
-instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f) :=
-  by
+instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f) := by
   conv =>
     congr
-    rw [← category.comp_id h]
+    rw [← category.comp_id h];
   infer_instance
 #align category_theory.limits.has_pushout_of_right_factors_epi CategoryTheory.Limits.hasPushout_of_right_factors_epi
 -/
@@ -2592,10 +2522,8 @@ theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g
 <too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_noneₓ'. -/
 @[simp]
-theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f :=
-  by
-  delta pushout_cocone_of_right_iso
-  simp
+theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f := by
+  delta pushout_cocone_of_right_iso; simp
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
 
 /- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left is a dubious translation:
@@ -2643,12 +2571,11 @@ instance pushout_inl_iso_of_right_iso : IsIso (pushout.inl : _ ⟶ pushout f g)
 variable (h : W ⟶ X) [Epi h]
 
 #print CategoryTheory.Limits.hasPushout_of_left_factors_epi /-
-instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h :=
-  by
+instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h := by
   conv =>
     congr
     skip
-    rw [← category.comp_id h]
+    rw [← category.comp_id h];
   infer_instance
 #align category_theory.limits.has_pushout_of_left_factors_epi CategoryTheory.Limits.hasPushout_of_left_factors_epi
 -/
@@ -2704,10 +2631,8 @@ instance fst_iso_of_mono_eq [Mono f] : IsIso (pullback.fst : pullback f f ⟶ _)
 -/
 
 #print CategoryTheory.Limits.snd_iso_of_mono_eq /-
-instance snd_iso_of_mono_eq [Mono f] : IsIso (pullback.snd : pullback f f ⟶ _) :=
-  by
-  rw [← fst_eq_snd_of_mono_eq]
-  infer_instance
+instance snd_iso_of_mono_eq [Mono f] : IsIso (pullback.snd : pullback f f ⟶ _) := by
+  rw [← fst_eq_snd_of_mono_eq]; infer_instance
 #align category_theory.limits.snd_iso_of_mono_eq CategoryTheory.Limits.snd_iso_of_mono_eq
 -/
 
@@ -2750,10 +2675,8 @@ instance inl_iso_of_epi_eq [Epi f] : IsIso (pushout.inl : _ ⟶ pushout f f) :=
 -/
 
 #print CategoryTheory.Limits.inr_iso_of_epi_eq /-
-instance inr_iso_of_epi_eq [Epi f] : IsIso (pushout.inr : _ ⟶ pushout f f) :=
-  by
-  rw [← inl_eq_inr_of_epi_eq]
-  infer_instance
+instance inr_iso_of_epi_eq [Epi f] : IsIso (pushout.inr : _ ⟶ pushout f f) := by
+  rw [← inl_eq_inr_of_epi_eq]; infer_instance
 #align category_theory.limits.inr_iso_of_epi_eq CategoryTheory.Limits.inr_iso_of_epi_eq
 -/
 
@@ -2792,10 +2715,7 @@ def bigSquareIsPullback (H : IsLimit (PullbackCone.mk _ _ h₂))
   rcases pullback_cone.is_limit.lift' H' s.fst l₁ hl₁.symm with ⟨l₂, hl₂, hl₂'⟩
   use l₂
   use hl₂
-  use
-    show l₂ ≫ f₁ ≫ f₂ = s.snd by
-      rw [← hl₁', ← hl₂', category.assoc]
-      rfl
+  use show l₂ ≫ f₁ ≫ f₂ = s.snd by rw [← hl₁', ← hl₂', category.assoc]; rfl
   intro m hm₁ hm₂
   apply pullback_cone.is_limit.hom_ext H'
   · erw [hm₁, hl₂]
@@ -2830,10 +2750,7 @@ def bigSquareIsPushout (H : IsColimit (PushoutCocone.mk _ _ h₂))
   rcases pushout_cocone.is_colimit.desc' H' s.inl (f₂ ≫ s.inr) this with ⟨l₁, hl₁, hl₁'⟩
   rcases pushout_cocone.is_colimit.desc' H l₁ s.inr hl₁' with ⟨l₂, hl₂, hl₂'⟩
   use l₂
-  use
-    show (g₁ ≫ g₂) ≫ l₂ = s.inl by
-      rw [← hl₁, ← hl₂, category.assoc]
-      rfl
+  use show (g₁ ≫ g₂) ≫ l₂ = s.inl by rw [← hl₁, ← hl₂, category.assoc]; rfl
   use hl₂'
   intro m hm₁ hm₂
   apply pushout_cocone.is_colimit.hom_ext H
@@ -2874,15 +2791,12 @@ def leftSquareIsPullback (H : IsLimit (PullbackCone.mk _ _ h₂))
   use hl₁
   constructor
   · apply pullback_cone.is_limit.hom_ext H
-    · erw [category.assoc, ← h₁, ← category.assoc, hl₁, s.condition]
-      rfl
-    · erw [category.assoc, hl₁']
-      rfl
+    · erw [category.assoc, ← h₁, ← category.assoc, hl₁, s.condition]; rfl
+    · erw [category.assoc, hl₁']; rfl
   · intro m hm₁ hm₂
     apply pullback_cone.is_limit.hom_ext H'
     · erw [hm₁, hl₁]
-    · erw [hl₁', ← hm₂]
-      exact (category.assoc _ _ _).symm
+    · erw [hl₁', ← hm₂]; exact (category.assoc _ _ _).symm
 #align category_theory.limits.left_square_is_pullback CategoryTheory.Limits.leftSquareIsPullback
 -/
 
@@ -2914,8 +2828,7 @@ def rightSquareIsPushout (H : IsColimit (PushoutCocone.mk _ _ h₁))
   use l₁
   refine' ⟨_, _, _⟩
   · apply pushout_cocone.is_colimit.hom_ext H
-    · erw [← category.assoc, hl₁]
-      rfl
+    · erw [← category.assoc, hl₁]; rfl
     · erw [← category.assoc, h₂, category.assoc, hl₁', s.condition]
   · exact hl₁'
   · intro m hm₁ hm₂
Diff
@@ -184,10 +184,7 @@ open WalkingSpan.Hom WalkingCospan.Hom WidePullbackShape.Hom WidePushoutShape.Ho
 variable {C : Type u} [Category.{v} C]
 
 /- warning: category_theory.limits.walking_cospan.ext -> CategoryTheory.Limits.WalkingCospan.ext is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right))) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right))) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.extₓ'. -/
 /-- To construct an isomorphism of cones over the walking cospan,
 it suffices to construct an isomorphism
@@ -210,10 +207,7 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
 #align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.ext
 
 /- warning: category_theory.limits.walking_span.ext -> CategoryTheory.Limits.WalkingSpan.ext is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right)) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right)) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_span.ext CategoryTheory.Limits.WalkingSpan.extₓ'. -/
 /-- To construct an isomorphism of cocones over the walking span,
 it suffices to construct an isomorphism
@@ -430,10 +424,7 @@ section
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
 
 /- warning: category_theory.limits.cospan_comp_iso_app_left -> CategoryTheory.Limits.cospanCompIso_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_app_left : (cospanCompIso F f g).app WalkingCospan.left = Iso.refl _ :=
@@ -441,10 +432,7 @@ theorem cospanCompIso_app_left : (cospanCompIso F f g).app WalkingCospan.left =
 #align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_left
 
 /- warning: category_theory.limits.cospan_comp_iso_app_right -> CategoryTheory.Limits.cospanCompIso_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_app_right : (cospanCompIso F f g).app WalkingCospan.right = Iso.refl _ :=
@@ -452,10 +440,7 @@ theorem cospanCompIso_app_right : (cospanCompIso F f g).app WalkingCospan.right
 #align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_right
 
 /- warning: category_theory.limits.cospan_comp_iso_app_one -> CategoryTheory.Limits.cospanCompIso_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_app_one : (cospanCompIso F f g).app WalkingCospan.one = Iso.refl _ :=
@@ -463,10 +448,7 @@ theorem cospanCompIso_app_one : (cospanCompIso F f g).app WalkingCospan.one = Is
 #align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_one
 
 /- warning: category_theory.limits.cospan_comp_iso_hom_app_left -> CategoryTheory.Limits.cospanCompIso_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_left : (cospanCompIso F f g).Hom.app WalkingCospan.left = 𝟙 _ :=
@@ -474,10 +456,7 @@ theorem cospanCompIso_hom_app_left : (cospanCompIso F f g).Hom.app WalkingCospan
 #align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_left
 
 /- warning: category_theory.limits.cospan_comp_iso_hom_app_right -> CategoryTheory.Limits.cospanCompIso_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_right : (cospanCompIso F f g).Hom.app WalkingCospan.right = 𝟙 _ :=
@@ -485,10 +464,7 @@ theorem cospanCompIso_hom_app_right : (cospanCompIso F f g).Hom.app WalkingCospa
 #align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_right
 
 /- warning: category_theory.limits.cospan_comp_iso_hom_app_one -> CategoryTheory.Limits.cospanCompIso_hom_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_one : (cospanCompIso F f g).Hom.app WalkingCospan.one = 𝟙 _ :=
@@ -496,10 +472,7 @@ theorem cospanCompIso_hom_app_one : (cospanCompIso F f g).Hom.app WalkingCospan.
 #align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_one
 
 /- warning: category_theory.limits.cospan_comp_iso_inv_app_left -> CategoryTheory.Limits.cospanCompIso_inv_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_left : (cospanCompIso F f g).inv.app WalkingCospan.left = 𝟙 _ :=
@@ -507,10 +480,7 @@ theorem cospanCompIso_inv_app_left : (cospanCompIso F f g).inv.app WalkingCospan
 #align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_left
 
 /- warning: category_theory.limits.cospan_comp_iso_inv_app_right -> CategoryTheory.Limits.cospanCompIso_inv_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_right : (cospanCompIso F f g).inv.app WalkingCospan.right = 𝟙 _ :=
@@ -518,10 +488,7 @@ theorem cospanCompIso_inv_app_right : (cospanCompIso F f g).inv.app WalkingCospa
 #align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_right
 
 /- warning: category_theory.limits.cospan_comp_iso_inv_app_one -> CategoryTheory.Limits.cospanCompIso_inv_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_one CategoryTheory.Limits.cospanCompIso_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.one = 𝟙 _ :=
@@ -548,10 +515,7 @@ section
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
 
 /- warning: category_theory.limits.span_comp_iso_app_left -> CategoryTheory.Limits.spanCompIso_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_app_left : (spanCompIso F f g).app WalkingSpan.left = Iso.refl _ :=
@@ -559,10 +523,7 @@ theorem spanCompIso_app_left : (spanCompIso F f g).app WalkingSpan.left = Iso.re
 #align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_left
 
 /- warning: category_theory.limits.span_comp_iso_app_right -> CategoryTheory.Limits.spanCompIso_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_app_right : (spanCompIso F f g).app WalkingSpan.right = Iso.refl _ :=
@@ -570,10 +531,7 @@ theorem spanCompIso_app_right : (spanCompIso F f g).app WalkingSpan.right = Iso.
 #align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_right
 
 /- warning: category_theory.limits.span_comp_iso_app_zero -> CategoryTheory.Limits.spanCompIso_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_app_zero : (spanCompIso F f g).app WalkingSpan.zero = Iso.refl _ :=
@@ -581,10 +539,7 @@ theorem spanCompIso_app_zero : (spanCompIso F f g).app WalkingSpan.zero = Iso.re
 #align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zero
 
 /- warning: category_theory.limits.span_comp_iso_hom_app_left -> CategoryTheory.Limits.spanCompIso_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_left : (spanCompIso F f g).Hom.app WalkingSpan.left = 𝟙 _ :=
@@ -592,10 +547,7 @@ theorem spanCompIso_hom_app_left : (spanCompIso F f g).Hom.app WalkingSpan.left
 #align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_left
 
 /- warning: category_theory.limits.span_comp_iso_hom_app_right -> CategoryTheory.Limits.spanCompIso_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_right : (spanCompIso F f g).Hom.app WalkingSpan.right = 𝟙 _ :=
@@ -603,10 +555,7 @@ theorem spanCompIso_hom_app_right : (spanCompIso F f g).Hom.app WalkingSpan.righ
 #align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_right
 
 /- warning: category_theory.limits.span_comp_iso_hom_app_zero -> CategoryTheory.Limits.spanCompIso_hom_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_zero : (spanCompIso F f g).Hom.app WalkingSpan.zero = 𝟙 _ :=
@@ -614,10 +563,7 @@ theorem spanCompIso_hom_app_zero : (spanCompIso F f g).Hom.app WalkingSpan.zero
 #align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zero
 
 /- warning: category_theory.limits.span_comp_iso_inv_app_left -> CategoryTheory.Limits.spanCompIso_inv_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_left : (spanCompIso F f g).inv.app WalkingSpan.left = 𝟙 _ :=
@@ -625,10 +571,7 @@ theorem spanCompIso_inv_app_left : (spanCompIso F f g).inv.app WalkingSpan.left
 #align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_left
 
 /- warning: category_theory.limits.span_comp_iso_inv_app_right -> CategoryTheory.Limits.spanCompIso_inv_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_right : (spanCompIso F f g).inv.app WalkingSpan.right = 𝟙 _ :=
@@ -636,10 +579,7 @@ theorem spanCompIso_inv_app_right : (spanCompIso F f g).inv.app WalkingSpan.righ
 #align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_right
 
 /- warning: category_theory.limits.span_comp_iso_inv_app_zero -> CategoryTheory.Limits.spanCompIso_inv_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_zero CategoryTheory.Limits.spanCompIso_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_zero : (spanCompIso F f g).inv.app WalkingSpan.zero = 𝟙 _ :=
@@ -671,10 +611,7 @@ def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ
 variable (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom)
 
 /- warning: category_theory.limits.cospan_ext_app_left -> CategoryTheory.Limits.cospanExt_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.left) iX
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.left) iX
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX :=
@@ -684,10 +621,7 @@ theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left =
 #align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_left
 
 /- warning: category_theory.limits.cospan_ext_app_right -> CategoryTheory.Limits.cospanExt_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.right) iY
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.right) iY
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY :=
@@ -697,10 +631,7 @@ theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right
 #align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_right
 
 /- warning: category_theory.limits.cospan_ext_app_one -> CategoryTheory.Limits.cospanExt_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.one) iZ
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.one) iZ
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ :=
@@ -710,10 +641,7 @@ theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = i
 #align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_one
 
 /- warning: category_theory.limits.cospan_ext_hom_app_left -> CategoryTheory.Limits.cospanExt_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.left = iX.Hom :=
@@ -723,10 +651,7 @@ theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospa
 #align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_left
 
 /- warning: category_theory.limits.cospan_ext_hom_app_right -> CategoryTheory.Limits.cospanExt_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.right = iY.Hom :=
@@ -736,10 +661,7 @@ theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCosp
 #align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_right
 
 /- warning: category_theory.limits.cospan_ext_hom_app_one -> CategoryTheory.Limits.cospanExt_hom_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom :=
@@ -749,10 +671,7 @@ theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan
 #align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_one
 
 /- warning: category_theory.limits.cospan_ext_inv_app_left -> CategoryTheory.Limits.cospanExt_inv_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.left = iX.inv :=
@@ -762,10 +681,7 @@ theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospa
 #align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_left
 
 /- warning: category_theory.limits.cospan_ext_inv_app_right -> CategoryTheory.Limits.cospanExt_inv_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.right = iY.inv :=
@@ -775,10 +691,7 @@ theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCosp
 #align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_right
 
 /- warning: category_theory.limits.cospan_ext_inv_app_one -> CategoryTheory.Limits.cospanExt_inv_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv :=
@@ -808,10 +721,7 @@ def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.H
 variable (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom)
 
 /- warning: category_theory.limits.span_ext_app_left -> CategoryTheory.Limits.spanExt_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.left) iY
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.left) iY
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_leftₓ'. -/
 @[simp]
 theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY :=
@@ -821,10 +731,7 @@ theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY :=
 #align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_left
 
 /- warning: category_theory.limits.span_ext_app_right -> CategoryTheory.Limits.spanExt_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.right) iZ
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.right) iZ
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_rightₓ'. -/
 @[simp]
 theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ :=
@@ -834,10 +741,7 @@ theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ
 #align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_right
 
 /- warning: category_theory.limits.span_ext_app_one -> CategoryTheory.Limits.spanExt_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.zero) iX
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.zero) iX
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_oneₓ'. -/
 @[simp]
 theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
@@ -847,10 +751,7 @@ theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
 #align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_one
 
 /- warning: category_theory.limits.span_ext_hom_app_left -> CategoryTheory.Limits.spanExt_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom :=
@@ -860,10 +761,7 @@ theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left
 #align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_left
 
 /- warning: category_theory.limits.span_ext_hom_app_right -> CategoryTheory.Limits.spanExt_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom :=
@@ -873,10 +771,7 @@ theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.rig
 #align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_right
 
 /- warning: category_theory.limits.span_ext_hom_app_zero -> CategoryTheory.Limits.spanExt_hom_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom :=
@@ -886,10 +781,7 @@ theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero
 #align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zero
 
 /- warning: category_theory.limits.span_ext_inv_app_left -> CategoryTheory.Limits.spanExt_inv_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv :=
@@ -899,10 +791,7 @@ theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left
 #align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_left
 
 /- warning: category_theory.limits.span_ext_inv_app_right -> CategoryTheory.Limits.spanExt_inv_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv :=
@@ -912,10 +801,7 @@ theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.rig
 #align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_right
 
 /- warning: category_theory.limits.span_ext_inv_app_zero -> CategoryTheory.Limits.spanExt_inv_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv :=
@@ -979,10 +865,7 @@ theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.s
 #align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_right
 
 /- warning: category_theory.limits.pullback_cone.condition_one -> CategoryTheory.Limits.PullbackCone.condition_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingCospan.one) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t) f)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X Z (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t) f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_oneₓ'. -/
 @[simp]
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
@@ -992,10 +875,7 @@ theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fs
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
 
 /- warning: category_theory.limits.pullback_cone.is_limit_aux -> CategoryTheory.Limits.PullbackCone.isLimitAux is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (lift : forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X (lift s) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y (lift s) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) m (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) m (lift s))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (lift : forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X (lift s) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y (lift s) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) m (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) m (lift s))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content -/
@@ -1046,10 +926,7 @@ def mk {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) : Pu
 -/
 
 /- warning: category_theory.limits.pullback_cone.mk_π_app_left -> CategoryTheory.Limits.PullbackCone.mk_π_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.left) fst
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.left) fst
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_leftₓ'. -/
 @[simp]
 theorem mk_π_app_left {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
@@ -1058,10 +935,7 @@ theorem mk_π_app_left {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f =
 #align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_left
 
 /- warning: category_theory.limits.pullback_cone.mk_π_app_right -> CategoryTheory.Limits.PullbackCone.mk_π_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.right) snd
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.right) snd
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_rightₓ'. -/
 @[simp]
 theorem mk_π_app_right {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
@@ -1070,10 +944,7 @@ theorem mk_π_app_right {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f
 #align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_right
 
 /- warning: category_theory.limits.pullback_cone.mk_π_app_one -> CategoryTheory.Limits.PullbackCone.mk_π_app_one is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.one) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) fst f)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_one CategoryTheory.Limits.PullbackCone.mk_π_app_oneₓ'. -/
 @[simp]
 theorem mk_π_app_one {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
@@ -1105,10 +976,7 @@ theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
 -/
 
 /- warning: category_theory.limits.pullback_cone.equalizer_ext -> CategoryTheory.Limits.PullbackCone.equalizer_ext is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X k (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X l (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y k (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y l (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t))) -> (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) k (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) l (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X k (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X l (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y k (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y l (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t))) -> (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) k (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) l (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_extₓ'. -/
 /-- To check whether a morphism is equalized by the maps of a pullback cone, it suffices to check
   it for `fst t` and `snd t` -/
@@ -1311,10 +1179,7 @@ theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.in
 #align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_right
 
 /- warning: category_theory.limits.pushout_cocone.condition_zero -> CategoryTheory.Limits.PushoutCocone.condition_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) Y (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingSpan.zero) f (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) f (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zeroₓ'. -/
 @[simp]
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
@@ -1324,10 +1189,7 @@ theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f 
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
 
 /- warning: category_theory.limits.pushout_cocone.is_colimit_aux -> CategoryTheory.Limits.PushoutCocone.isColimitAux is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (desc : forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) m) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) m (desc s))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (desc : forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) m) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) m (desc s))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
     It only asks for a proof of facts that carry any mathematical content -/
@@ -1373,10 +1235,7 @@ def mk {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) : Pu
 -/
 
 /- warning: category_theory.limits.pushout_cocone.mk_ι_app_left -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.left) inl
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.left) inl
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_leftₓ'. -/
 @[simp]
 theorem mk_ι_app_left {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
@@ -1385,10 +1244,7 @@ theorem mk_ι_app_left {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl =
 #align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_left
 
 /- warning: category_theory.limits.pushout_cocone.mk_ι_app_right -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.right) inr
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.right) inr
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_rightₓ'. -/
 @[simp]
 theorem mk_ι_app_right {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
@@ -1397,10 +1253,7 @@ theorem mk_ι_app_right {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl
 #align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_right
 
 /- warning: category_theory.limits.pushout_cocone.mk_ι_app_zero -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) Y (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.zero) f inl)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_zero CategoryTheory.Limits.PushoutCocone.mk_ι_app_zeroₓ'. -/
 @[simp]
 theorem mk_ι_app_zero {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
@@ -1432,10 +1285,7 @@ theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
 -/
 
 /- warning: category_theory.limits.pushout_cocone.coequalizer_ext -> CategoryTheory.Limits.PushoutCocone.coequalizer_ext is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) l))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) l))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_extₓ'. -/
 /-- To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check
   it for `inl t` and `inr t` -/
@@ -1648,10 +1498,7 @@ def PullbackCone.ofCone {F : WalkingCospan ⥤ C} (t : Cone F) : PullbackCone (F
 #align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofCone
 
 /- warning: category_theory.limits.pullback_cone.iso_mk -> CategoryTheory.Limits.PullbackCone.isoMk is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Functor.obj.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cones.postcompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Limits.diagramIsoCospan.{u1, u2} C _inst_1 F))) t) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.isoMk._proof_1.{u2, u1} C _inst_1 F t))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F))) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cones.postcompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Limits.diagramIsoCospan.{u1, u2} C _inst_1 F)))) t) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMkₓ'. -/
 /-- A diagram `walking_cospan ⥤ C` is isomorphic to some `pullback_cone.mk` after
 composing with `diagram_iso_cospan`. -/
@@ -1683,10 +1530,7 @@ def PushoutCocone.ofCocone {F : WalkingSpan ⥤ C} (t : Cocone F) :
 #align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCocone
 
 /- warning: category_theory.limits.pushout_cocone.iso_mk -> CategoryTheory.Limits.PushoutCocone.isoMk is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Functor.obj.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocones.precompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Limits.diagramIsoSpan.{u1, u2} C _inst_1 F))) t) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.isoMk._proof_1.{u2, u1} C _inst_1 F t))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F))) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocones.precompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Limits.diagramIsoSpan.{u1, u2} C _inst_1 F)))) t) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMkₓ'. -/
 /-- A diagram `walking_span ⥤ C` is isomorphic to some `pushout_cocone.mk` after composing with
 `diagram_iso_span`. -/
@@ -2155,10 +1999,7 @@ def pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] [HasPullbac
 #align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparison
 
 /- warning: category_theory.limits.pullback_comparison_comp_fst -> CategoryTheory.Limits.pullbackComparison_comp_fst is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.fst.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) X (CategoryTheory.Limits.pullback.fst.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.fst.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) X (CategoryTheory.Limits.pullback.fst.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fstₓ'. -/
 @[simp, reassoc]
 theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
@@ -2168,10 +2009,7 @@ theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
 #align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fst
 
 /- warning: category_theory.limits.pullback_comparison_comp_snd -> CategoryTheory.Limits.pullbackComparison_comp_snd is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.snd.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) Y (CategoryTheory.Limits.pullback.snd.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.snd.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) Y (CategoryTheory.Limits.pullback.snd.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_sndₓ'. -/
 @[simp, reassoc]
 theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
@@ -2181,10 +2019,7 @@ theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
 #align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_snd
 
 /- warning: category_theory.limits.map_lift_pullback_comparison -> CategoryTheory.Limits.map_lift_pullbackComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W X} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Y} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pullback.lift.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w)) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Limits.pullback.lift.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (Eq.mpr.{0} (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) (id_tag Tactic.IdTag.simp (Eq.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)))) ((fun (a : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (a_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (e_1 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a a_1) (ᾰ : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (ᾰ_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (e_2 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) ᾰ ᾰ_1) => congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a_1) ᾰ ᾰ_1 (congr_arg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) -> Prop) a a_1 (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z))) e_1) e_2) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X Z h f)) ((fun (self : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} (ᾰ : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (ᾰ_1 : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (e_4 : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) ᾰ ᾰ_1) => congr_arg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self Y)) ᾰ ᾰ_1 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X Y) e_4) G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g) w)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y Z k g)))) (rfl.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)))))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W X} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Y} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pullback.lift.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w)) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Limits.pullback.lift.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W X Z h f) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W Y Z k g)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparisonₓ'. -/
 @[simp, reassoc]
 theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
@@ -2211,10 +2046,7 @@ def pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] [HasPushout (
 #align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparison
 
 /- warning: category_theory.limits.inl_comp_pushout_comparison -> CategoryTheory.Limits.inl_comp_pushoutComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inl.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inl.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inl.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc]
 theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
@@ -2223,10 +2055,7 @@ theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
 #align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparison
 
 /- warning: category_theory.limits.inr_comp_pushout_comparison -> CategoryTheory.Limits.inr_comp_pushoutComparison is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inr.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inr.{u2, u3} C _inst_1 X Y Z f g _inst_3))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inr.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inr.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc]
 theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
@@ -2235,10 +2064,7 @@ theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
 #align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparison
 
 /- warning: category_theory.limits.pushout_comparison_map_desc -> CategoryTheory.Limits.pushoutComparison_map_desc is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y W} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Z W} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) W (CategoryTheory.Limits.pushout.desc.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w))) (CategoryTheory.Limits.pushout.desc.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k) (Eq.mpr.{0} (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) (id_tag Tactic.IdTag.simp (Eq.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)))) ((fun (a : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (a_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (e_1 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a a_1) (ᾰ : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (ᾰ_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (e_2 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) ᾰ ᾰ_1) => congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a_1) ᾰ ᾰ_1 (congr_arg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) -> Prop) a a_1 (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W))) e_1) e_2) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y W f h)) ((fun (self : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} (ᾰ : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (ᾰ_1 : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (e_4 : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) ᾰ ᾰ_1) => congr_arg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self Y)) ᾰ ᾰ_1 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X Y) e_4) G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k) w)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z W g k)))) (rfl.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)))))
-but is expected to have type
-  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y W} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Z W} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) W (CategoryTheory.Limits.pushout.desc.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w))) (CategoryTheory.Limits.pushout.desc.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Y W f h) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Z W g k)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_descₓ'. -/
 @[simp, reassoc]
 theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
@@ -2416,10 +2242,7 @@ theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ :=
 -/
 
 /- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g :=
@@ -2429,10 +2252,7 @@ theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app n
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
 
 /- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) Z (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) g (CategoryTheory.inv.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) Z f _inst_3))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z X g (CategoryTheory.inv.{u1, u2} C _inst_1 X Z f _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_left : (pullbackConeOfLeftIso f g).π.app left = g ≫ inv f :=
@@ -2440,10 +2260,7 @@ theorem pullbackConeOfLeftIso_π_app_left : (pullbackConeOfLeftIso f g).π.app l
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left
 
 /- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_right CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_right : (pullbackConeOfLeftIso f g).π.app right = 𝟙 _ :=
@@ -2536,10 +2353,7 @@ theorem pullbackConeOfRightIso_snd : (pullbackConeOfRightIso f g).snd = f ≫ in
 -/
 
 /- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app none = f :=
@@ -2547,10 +2361,7 @@ theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none
 
 /- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app left = 𝟙 _ :=
@@ -2558,10 +2369,7 @@ theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
 
 /- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) Z (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) f (CategoryTheory.inv.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) Z g _inst_3))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Y f (CategoryTheory.inv.{u1, u2} C _inst_1 Y Z g _inst_3))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g :=
@@ -2670,10 +2478,7 @@ theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ :
 -/
 
 /- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g :=
@@ -2683,10 +2488,7 @@ theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
 
 /- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.inv.{u1, u2} C _inst_1 X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) f _inst_3) g)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y X Z (CategoryTheory.inv.{u1, u2} C _inst_1 X Y f _inst_3) g)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_left : (pushoutCoconeOfLeftIso f g).ι.app left = inv f ≫ g :=
@@ -2694,10 +2496,7 @@ theorem pushoutCoconeOfLeftIso_ι_app_left : (pushoutCoconeOfLeftIso f g).ι.app
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left
 
 /- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_right : (pushoutCoconeOfLeftIso f g).ι.app right = 𝟙 _ :=
@@ -2790,10 +2589,7 @@ theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g
 -/
 
 /- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f :=
@@ -2803,10 +2599,7 @@ theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.a
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
 
 /- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_left : (pushoutCoconeOfRightIso f g).ι.app left = 𝟙 _ :=
@@ -2814,10 +2607,7 @@ theorem pushoutCoconeOfRightIso_ι_app_left : (pushoutCoconeOfRightIso f g).ι.a
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left
 
 /- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.inv.{u1, u2} C _inst_1 X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) g _inst_3) f)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z X Y (CategoryTheory.inv.{u1, u2} C _inst_1 X Z g _inst_3) f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_right :
Diff
@@ -1098,7 +1098,7 @@ theorem mk_snd {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫
 -/
 
 #print CategoryTheory.Limits.PullbackCone.condition /-
-@[reassoc.1]
+@[reassoc]
 theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
   (t.w inl).trans (t.w inr).symm
 #align category_theory.limits.pullback_cone.condition CategoryTheory.Limits.PullbackCone.condition
@@ -1425,7 +1425,7 @@ theorem mk_inr {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ i
 -/
 
 #print CategoryTheory.Limits.PushoutCocone.condition /-
-@[reassoc.1]
+@[reassoc]
 theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
   (t.w fst).trans (t.w snd).symm
 #align category_theory.limits.pushout_cocone.condition CategoryTheory.Limits.PushoutCocone.condition
@@ -1812,7 +1812,7 @@ theorem PushoutCocone.inr_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
 -/
 
 #print CategoryTheory.Limits.pullback.lift_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullback.lift_fst {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.fst = h :=
   limit.lift_π _ _
@@ -1820,7 +1820,7 @@ theorem pullback.lift_fst {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback
 -/
 
 #print CategoryTheory.Limits.pullback.lift_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullback.lift_snd {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.snd = k :=
   limit.lift_π _ _
@@ -1828,7 +1828,7 @@ theorem pullback.lift_snd {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback
 -/
 
 #print CategoryTheory.Limits.pushout.inl_desc /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pushout.inl_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inl ≫ pushout.desc h k w = h :=
   colimit.ι_desc _ _
@@ -1836,7 +1836,7 @@ theorem pushout.inl_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f
 -/
 
 #print CategoryTheory.Limits.pushout.inr_desc /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pushout.inr_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inr ≫ pushout.desc h k w = k :=
   colimit.ι_desc _ _
@@ -1862,7 +1862,7 @@ def pullback.desc' {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h
 -/
 
 #print CategoryTheory.Limits.pullback.condition /-
-@[reassoc.1]
+@[reassoc]
 theorem pullback.condition {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] :
     (pullback.fst : pullback f g ⟶ X) ≫ f = pullback.snd ≫ g :=
   PullbackCone.condition _
@@ -1870,7 +1870,7 @@ theorem pullback.condition {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback
 -/
 
 #print CategoryTheory.Limits.pushout.condition /-
-@[reassoc.1]
+@[reassoc]
 theorem pushout.condition {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] :
     f ≫ (pushout.inl : Y ⟶ pushout f g) = g ≫ pushout.inr :=
   PushoutCocone.condition _
@@ -2160,7 +2160,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.fst.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) X (CategoryTheory.Limits.pullback.fst.{u2, u3} C _inst_1 X Y Z f g _inst_3))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fstₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
     pullbackComparison G f g ≫ pullback.fst = G.map pullback.fst :=
@@ -2173,7 +2173,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.snd.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) Y (CategoryTheory.Limits.pullback.snd.{u2, u3} C _inst_1 X Y Z f g _inst_3))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_sndₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
     pullbackComparison G f g ≫ pullback.snd = G.map pullback.snd :=
@@ -2186,7 +2186,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W X} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Y} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pullback.lift.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w)) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Limits.pullback.lift.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W X Z h f) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W Y Z k g)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))))))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparisonₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] {W : C} {h : W ⟶ X} {k : W ⟶ Y} (w : h ≫ f = k ≫ g) :
     G.map (pullback.lift _ _ w) ≫ pullbackComparison G f g =
@@ -2216,7 +2216,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inl.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inl.{u2, u3} C _inst_1 X Y Z f g _inst_3))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparisonₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inl ≫ pushoutComparison G f g = G.map pushout.inl :=
   pushout.inl_desc _ _ _
@@ -2228,7 +2228,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inr.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inr.{u2, u3} C _inst_1 X Y Z f g _inst_3))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparisonₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inr ≫ pushoutComparison G f g = G.map pushout.inr :=
   pushout.inr_desc _ _ _
@@ -2240,7 +2240,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y W} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Z W} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) W (CategoryTheory.Limits.pushout.desc.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w))) (CategoryTheory.Limits.pushout.desc.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Y W f h) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Z W g k)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))))))
 Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_descₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] {W : C} {h : Y ⟶ W} {k : Z ⟶ W} (w : f ≫ h = g ≫ k) :
     pushoutComparison G f g ≫ G.map (pushout.desc _ _ w) =
@@ -2277,28 +2277,28 @@ def pullbackSymmetry [HasPullback f g] : pullback f g ≅ pullback g f :=
 -/
 
 #print CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackSymmetry_hom_comp_fst [HasPullback f g] :
     (pullbackSymmetry f g).Hom ≫ pullback.fst = pullback.snd := by simp [pullback_symmetry]
 #align category_theory.limits.pullback_symmetry_hom_comp_fst CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
 -/
 
 #print CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackSymmetry_hom_comp_snd [HasPullback f g] :
     (pullbackSymmetry f g).Hom ≫ pullback.snd = pullback.fst := by simp [pullback_symmetry]
 #align category_theory.limits.pullback_symmetry_hom_comp_snd CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd
 -/
 
 #print CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackSymmetry_inv_comp_fst [HasPullback f g] :
     (pullbackSymmetry f g).inv ≫ pullback.fst = pullback.snd := by simp [iso.inv_comp_eq]
 #align category_theory.limits.pullback_symmetry_inv_comp_fst CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst
 -/
 
 #print CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackSymmetry_inv_comp_snd [HasPullback f g] :
     (pullbackSymmetry f g).inv ≫ pullback.snd = pullback.fst := by simp [iso.inv_comp_eq]
 #align category_theory.limits.pullback_symmetry_inv_comp_snd CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd
@@ -2333,7 +2333,7 @@ def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
 -/
 
 #print CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inl ≫ (pushoutSymmetry f g).Hom = pushout.inr :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
@@ -2342,7 +2342,7 @@ theorem inl_comp_pushoutSymmetry_hom [HasPushout f g] :
 -/
 
 #print CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inr ≫ (pushoutSymmetry f g).Hom = pushout.inl :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
@@ -2351,14 +2351,14 @@ theorem inr_comp_pushoutSymmetry_hom [HasPushout f g] :
 -/
 
 #print CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_comp_pushoutSymmetry_inv [HasPushout f g] :
     pushout.inl ≫ (pushoutSymmetry f g).inv = pushout.inr := by simp [iso.comp_inv_eq]
 #align category_theory.limits.inl_comp_pushout_symmetry_inv CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv
 -/
 
 #print CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_comp_pushoutSymmetry_inv [HasPushout f g] :
     pushout.inr ≫ (pushoutSymmetry f g).inv = pushout.inl := by simp [iso.comp_inv_eq]
 #align category_theory.limits.inr_comp_pushout_symmetry_inv CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv
@@ -3159,7 +3159,7 @@ noncomputable def pullbackRightPullbackFstIso :
 -/
 
 #print CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackRightPullbackFstIso_hom_fst :
     (pullbackRightPullbackFstIso f g f').Hom ≫ pullback.fst = pullback.fst :=
   IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.left
@@ -3167,7 +3167,7 @@ theorem pullbackRightPullbackFstIso_hom_fst :
 -/
 
 #print CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackRightPullbackFstIso_hom_snd :
     (pullbackRightPullbackFstIso f g f').Hom ≫ pullback.snd = pullback.snd ≫ pullback.snd :=
   IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
@@ -3175,7 +3175,7 @@ theorem pullbackRightPullbackFstIso_hom_snd :
 -/
 
 #print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackRightPullbackFstIso_inv_fst :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.fst = pullback.fst :=
   IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.left
@@ -3183,7 +3183,7 @@ theorem pullbackRightPullbackFstIso_inv_fst :
 -/
 
 #print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackRightPullbackFstIso_inv_snd_snd :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.snd ≫ pullback.snd = pullback.snd :=
   IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.right
@@ -3191,7 +3191,7 @@ theorem pullbackRightPullbackFstIso_inv_snd_snd :
 -/
 
 #print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackRightPullbackFstIso_inv_snd_fst :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ f' :=
   by
@@ -3222,7 +3222,7 @@ noncomputable def pushoutLeftPushoutInrIso :
 -/
 
 #print CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_pushoutLeftPushoutInrIso_inv :
     pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').inv = pushout.inl ≫ pushout.inl :=
   ((bigSquareIsPushout g g' _ _ f _ _ pushout.condition pushout.condition (pushoutIsPushout _ _)
@@ -3233,7 +3233,7 @@ theorem inl_pushoutLeftPushoutInrIso_inv :
 -/
 
 #print CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_pushoutLeftPushoutInrIso_hom :
     pushout.inr ≫ (pushoutLeftPushoutInrIso f g g').Hom = pushout.inr :=
   ((bigSquareIsPushout g g' _ _ f _ _ pushout.condition pushout.condition (pushoutIsPushout _ _)
@@ -3244,7 +3244,7 @@ theorem inr_pushoutLeftPushoutInrIso_hom :
 -/
 
 #print CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_pushoutLeftPushoutInrIso_inv :
     pushout.inr ≫ (pushoutLeftPushoutInrIso f g g').inv = pushout.inr := by
   rw [iso.comp_inv_eq, inr_pushout_left_pushout_inr_iso_hom]
@@ -3252,7 +3252,7 @@ theorem inr_pushoutLeftPushoutInrIso_inv :
 -/
 
 #print CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_inl_pushoutLeftPushoutInrIso_hom :
     pushout.inl ≫ pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').Hom = pushout.inl := by
   rw [← category.assoc, ← iso.eq_comp_inv, inl_pushout_left_pushout_inr_iso_inv]
@@ -3260,7 +3260,7 @@ theorem inl_inl_pushoutLeftPushoutInrIso_hom :
 -/
 
 #print CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_inl_pushoutLeftPushoutInrIso_hom :
     pushout.inr ≫ pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').Hom = g' ≫ pushout.inr := by
   rw [← category.assoc, ← iso.eq_comp_inv, category.assoc, inr_pushout_left_pushout_inr_iso_inv,
@@ -3443,7 +3443,7 @@ noncomputable def pullbackAssoc :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_inv_fst_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_inv_fst_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.fst = pullback.fst :=
   by
@@ -3456,7 +3456,7 @@ theorem pullbackAssoc_inv_fst_fst :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_hom_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_hom_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.fst = pullback.fst ≫ pullback.fst := by
   rw [← iso.eq_inv_comp, pullback_assoc_inv_fst_fst]
@@ -3464,7 +3464,7 @@ theorem pullbackAssoc_hom_fst :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_hom_snd_fst /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_hom_snd_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd :=
   by
@@ -3477,7 +3477,7 @@ theorem pullbackAssoc_hom_snd_fst :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_hom_snd_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_hom_snd_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.snd ≫ pullback.snd = pullback.snd :=
   by
@@ -3490,7 +3490,7 @@ theorem pullbackAssoc_hom_snd_snd :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_inv_fst_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_inv_fst_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst :=
   by rw [iso.inv_comp_eq, pullback_assoc_hom_snd_fst]
@@ -3498,7 +3498,7 @@ theorem pullbackAssoc_inv_fst_snd :
 -/
 
 #print CategoryTheory.Limits.pullbackAssoc_inv_snd /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem pullbackAssoc_inv_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.snd = pullback.snd ≫ pullback.snd := by
   rw [iso.inv_comp_eq, pullback_assoc_hom_snd_snd]
@@ -3680,7 +3680,7 @@ noncomputable def pushoutAssoc :
 -/
 
 #print CategoryTheory.Limits.inl_inl_pushoutAssoc_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_inl_pushoutAssoc_hom :
     pushout.inl ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inl :=
   by
@@ -3694,7 +3694,7 @@ theorem inl_inl_pushoutAssoc_hom :
 -/
 
 #print CategoryTheory.Limits.inr_inl_pushoutAssoc_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_inl_pushoutAssoc_hom :
     pushout.inr ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inl ≫ pushout.inr :=
   by
@@ -3708,7 +3708,7 @@ theorem inr_inl_pushoutAssoc_hom :
 -/
 
 #print CategoryTheory.Limits.inr_inr_pushoutAssoc_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_inr_pushoutAssoc_inv :
     pushout.inr ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr :=
   by
@@ -3722,7 +3722,7 @@ theorem inr_inr_pushoutAssoc_inv :
 -/
 
 #print CategoryTheory.Limits.inl_pushoutAssoc_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_pushoutAssoc_inv :
     pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inl ≫ pushout.inl := by
   rw [iso.comp_inv_eq, category.assoc, inl_inl_pushout_assoc_hom]
@@ -3730,7 +3730,7 @@ theorem inl_pushoutAssoc_inv :
 -/
 
 #print CategoryTheory.Limits.inl_inr_pushoutAssoc_inv /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inl_inr_pushoutAssoc_inv :
     pushout.inl ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr ≫ pushout.inl := by
   rw [← category.assoc, iso.comp_inv_eq, category.assoc, inr_inl_pushout_assoc_hom]
@@ -3738,7 +3738,7 @@ theorem inl_inr_pushoutAssoc_inv :
 -/
 
 #print CategoryTheory.Limits.inr_pushoutAssoc_hom /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inr_pushoutAssoc_hom :
     pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inr ≫ pushout.inr := by
   rw [← iso.eq_comp_inv, category.assoc, inr_inr_pushout_assoc_inv]
Diff
@@ -2490,8 +2490,7 @@ instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫
 #print CategoryTheory.Limits.pullback_snd_iso_of_right_factors_mono /-
 instance pullback_snd_iso_of_right_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.snd : pullback i (f ≫ i) ⟶ _) := by
-  convert
-      (congr_arg is_iso
+  convert(congr_arg is_iso
             (show _ ≫ pullback.snd = _ from
               limit.iso_limit_cone_hom_π ⟨_, pullback_is_pullback_of_comp_mono (𝟙 _) f i⟩
                 walking_cospan.right)).mp
@@ -2610,8 +2609,7 @@ instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i)
 #print CategoryTheory.Limits.pullback_snd_iso_of_left_factors_mono /-
 instance pullback_snd_iso_of_left_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.fst : pullback (f ≫ i) i ⟶ _) := by
-  convert
-      (congr_arg is_iso
+  convert(congr_arg is_iso
             (show _ ≫ pullback.fst = _ from
               limit.iso_limit_cone_hom_π ⟨_, pullback_is_pullback_of_comp_mono f (𝟙 _) i⟩
                 walking_cospan.left)).mp
@@ -2746,8 +2744,7 @@ instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f)
 #print CategoryTheory.Limits.pushout_inr_iso_of_right_factors_epi /-
 instance pushout_inr_iso_of_right_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inr : _ ⟶ pushout h (h ≫ f)) := by
-  convert
-      (congr_arg is_iso
+  convert(congr_arg is_iso
             (show pushout.inr ≫ _ = _ from
               colimit.iso_colimit_cocone_ι_inv ⟨_, pushout_is_pushout_of_epi_comp (𝟙 _) f h⟩
                 walking_span.right)).mp
@@ -2869,8 +2866,7 @@ instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h :
 #print CategoryTheory.Limits.pushout_inl_iso_of_left_factors_epi /-
 instance pushout_inl_iso_of_left_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inl : _ ⟶ pushout (h ≫ f) h) := by
-  convert
-      (congr_arg is_iso
+  convert(congr_arg is_iso
             (show pushout.inl ≫ _ = _ from
               colimit.iso_colimit_cocone_ι_inv ⟨_, pushout_is_pushout_of_epi_comp f (𝟙 _) h⟩
                 walking_span.left)).mp
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Markus Himmel, Bhavik Mehta, Andrew Yang
 
 ! This file was ported from Lean 3 source module category_theory.limits.shapes.pullbacks
-! leanprover-community/mathlib commit 7316286ff2942aa14e540add9058c6b0aa1c8070
+! leanprover-community/mathlib commit f47581155c818e6361af4e4fda60d27d020c226b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.CategoryTheory.Limits.Shapes.BinaryProducts
 /-!
 # Pullbacks
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We define a category `walking_cospan` (resp. `walking_span`), which is the index category
 for the given data for a pullback (resp. pushout) diagram. Convenience methods `cospan f g`
 and `span f g` construct functors from the walking (co)span, hitting the given morphisms.
Diff
@@ -36,80 +36,104 @@ universe w v₁ v₂ v u u₂
 
 attribute [local tidy] tactic.case_bash
 
+#print CategoryTheory.Limits.WalkingCospan /-
 /-- The type of objects for the diagram indexing a pullback, defined as a special case of
 `wide_pullback_shape`.
 -/
 abbrev WalkingCospan : Type :=
   WidePullbackShape WalkingPair
 #align category_theory.limits.walking_cospan CategoryTheory.Limits.WalkingCospan
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.left /-
 /-- The left point of the walking cospan. -/
 @[match_pattern]
 abbrev WalkingCospan.left : WalkingCospan :=
   some WalkingPair.left
 #align category_theory.limits.walking_cospan.left CategoryTheory.Limits.WalkingCospan.left
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.right /-
 /-- The right point of the walking cospan. -/
 @[match_pattern]
 abbrev WalkingCospan.right : WalkingCospan :=
   some WalkingPair.right
 #align category_theory.limits.walking_cospan.right CategoryTheory.Limits.WalkingCospan.right
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.one /-
 /-- The central point of the walking cospan. -/
 @[match_pattern]
 abbrev WalkingCospan.one : WalkingCospan :=
   none
 #align category_theory.limits.walking_cospan.one CategoryTheory.Limits.WalkingCospan.one
+-/
 
+#print CategoryTheory.Limits.WalkingSpan /-
 /-- The type of objects for the diagram indexing a pushout, defined as a special case of
 `wide_pushout_shape`.
 -/
 abbrev WalkingSpan : Type :=
   WidePushoutShape WalkingPair
 #align category_theory.limits.walking_span CategoryTheory.Limits.WalkingSpan
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.left /-
 /-- The left point of the walking span. -/
 @[match_pattern]
 abbrev WalkingSpan.left : WalkingSpan :=
   some WalkingPair.left
 #align category_theory.limits.walking_span.left CategoryTheory.Limits.WalkingSpan.left
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.right /-
 /-- The right point of the walking span. -/
 @[match_pattern]
 abbrev WalkingSpan.right : WalkingSpan :=
   some WalkingPair.right
 #align category_theory.limits.walking_span.right CategoryTheory.Limits.WalkingSpan.right
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.zero /-
 /-- The central point of the walking span. -/
 @[match_pattern]
 abbrev WalkingSpan.zero : WalkingSpan :=
   none
 #align category_theory.limits.walking_span.zero CategoryTheory.Limits.WalkingSpan.zero
+-/
 
 namespace WalkingCospan
 
+#print CategoryTheory.Limits.WalkingCospan.Hom /-
 /-- The type of arrows for the diagram indexing a pullback. -/
 abbrev Hom : WalkingCospan → WalkingCospan → Type :=
   WidePullbackShape.Hom
 #align category_theory.limits.walking_cospan.hom CategoryTheory.Limits.WalkingCospan.Hom
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.Hom.inl /-
 /-- The left arrow of the walking cospan. -/
 @[match_pattern]
 abbrev Hom.inl : left ⟶ one :=
   WidePullbackShape.Hom.term _
 #align category_theory.limits.walking_cospan.hom.inl CategoryTheory.Limits.WalkingCospan.Hom.inl
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.Hom.inr /-
 /-- The right arrow of the walking cospan. -/
 @[match_pattern]
 abbrev Hom.inr : right ⟶ one :=
   WidePullbackShape.Hom.term _
 #align category_theory.limits.walking_cospan.hom.inr CategoryTheory.Limits.WalkingCospan.Hom.inr
+-/
 
+#print CategoryTheory.Limits.WalkingCospan.Hom.id /-
 /-- The identity arrows of the walking cospan. -/
 @[match_pattern]
 abbrev Hom.id (X : WalkingCospan) : X ⟶ X :=
   WidePullbackShape.Hom.id X
 #align category_theory.limits.walking_cospan.hom.id CategoryTheory.Limits.WalkingCospan.Hom.id
+-/
 
 instance (X Y : WalkingCospan) : Subsingleton (X ⟶ Y) := by tidy
 
@@ -117,28 +141,36 @@ end WalkingCospan
 
 namespace WalkingSpan
 
+#print CategoryTheory.Limits.WalkingSpan.Hom /-
 /-- The type of arrows for the diagram indexing a pushout. -/
 abbrev Hom : WalkingSpan → WalkingSpan → Type :=
   WidePushoutShape.Hom
 #align category_theory.limits.walking_span.hom CategoryTheory.Limits.WalkingSpan.Hom
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.Hom.fst /-
 /-- The left arrow of the walking span. -/
 @[match_pattern]
 abbrev Hom.fst : zero ⟶ left :=
   WidePushoutShape.Hom.init _
 #align category_theory.limits.walking_span.hom.fst CategoryTheory.Limits.WalkingSpan.Hom.fst
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.Hom.snd /-
 /-- The right arrow of the walking span. -/
 @[match_pattern]
 abbrev Hom.snd : zero ⟶ right :=
   WidePushoutShape.Hom.init _
 #align category_theory.limits.walking_span.hom.snd CategoryTheory.Limits.WalkingSpan.Hom.snd
+-/
 
+#print CategoryTheory.Limits.WalkingSpan.Hom.id /-
 /-- The identity arrows of the walking span. -/
 @[match_pattern]
 abbrev Hom.id (X : WalkingSpan) : X ⟶ X :=
   WidePushoutShape.Hom.id X
 #align category_theory.limits.walking_span.hom.id CategoryTheory.Limits.WalkingSpan.Hom.id
+-/
 
 instance (X Y : WalkingSpan) : Subsingleton (X ⟶ Y) := by tidy
 
@@ -148,6 +180,12 @@ open WalkingSpan.Hom WalkingCospan.Hom WidePullbackShape.Hom WidePushoutShape.Ho
 
 variable {C : Type u} [Category.{v} C]
 
+/- warning: category_theory.limits.walking_cospan.ext -> CategoryTheory.Limits.WalkingCospan.ext is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right))) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right))) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.extₓ'. -/
 /-- To construct an isomorphism of cones over the walking cospan,
 it suffices to construct an isomorphism
 of the cone points and check it commutes with the legs to `left` and `right`. -/
@@ -168,6 +206,12 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.p
   · exact w₂
 #align category_theory.limits.walking_cospan.ext CategoryTheory.Limits.WalkingCospan.ext
 
+/- warning: category_theory.limits.walking_span.ext -> CategoryTheory.Limits.WalkingSpan.ext is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right)) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} {s : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} {t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F} (i : CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F s) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) i)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right)) -> (CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) s t)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_span.ext CategoryTheory.Limits.WalkingSpan.extₓ'. -/
 /-- To construct an isomorphism of cocones over the walking span,
 it suffices to construct an isomorphism
 of the cocone points and check it commutes with the legs from `left` and `right`. -/
@@ -188,87 +232,175 @@ def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
   · exact w₂
 #align category_theory.limits.walking_span.ext CategoryTheory.Limits.WalkingSpan.ext
 
+#print CategoryTheory.Limits.cospan /-
 /-- `cospan f g` is the functor from the walking cospan hitting `f` and `g`. -/
 def cospan {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : WalkingCospan ⥤ C :=
   WidePullbackShape.wideCospan Z (fun j => WalkingPair.casesOn j X Y) fun j =>
     WalkingPair.casesOn j f g
 #align category_theory.limits.cospan CategoryTheory.Limits.cospan
+-/
 
+#print CategoryTheory.Limits.span /-
 /-- `span f g` is the functor from the walking span hitting `f` and `g`. -/
 def span {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : WalkingSpan ⥤ C :=
   WidePushoutShape.wideSpan X (fun j => WalkingPair.casesOn j Y Z) fun j =>
     WalkingPair.casesOn j f g
 #align category_theory.limits.span CategoryTheory.Limits.span
+-/
 
+/- warning: category_theory.limits.cospan_left -> CategoryTheory.Limits.cospan_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) X
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) X
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_left CategoryTheory.Limits.cospan_leftₓ'. -/
 @[simp]
 theorem cospan_left {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.left = X :=
   rfl
 #align category_theory.limits.cospan_left CategoryTheory.Limits.cospan_left
 
+/- warning: category_theory.limits.span_left -> CategoryTheory.Limits.span_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) Y
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) Y
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_left CategoryTheory.Limits.span_leftₓ'. -/
 @[simp]
 theorem span_left {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.left = Y :=
   rfl
 #align category_theory.limits.span_left CategoryTheory.Limits.span_left
 
+/- warning: category_theory.limits.cospan_right -> CategoryTheory.Limits.cospan_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) Y
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) Y
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_right CategoryTheory.Limits.cospan_rightₓ'. -/
 @[simp]
 theorem cospan_right {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).obj WalkingCospan.right = Y :=
   rfl
 #align category_theory.limits.cospan_right CategoryTheory.Limits.cospan_right
 
+/- warning: category_theory.limits.span_right -> CategoryTheory.Limits.span_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) Z
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) Z
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_right CategoryTheory.Limits.span_rightₓ'. -/
 @[simp]
 theorem span_right {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.right = Z :=
   rfl
 #align category_theory.limits.span_right CategoryTheory.Limits.span_right
 
+/- warning: category_theory.limits.cospan_one -> CategoryTheory.Limits.cospan_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) Z
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) Z
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_one CategoryTheory.Limits.cospan_oneₓ'. -/
 @[simp]
 theorem cospan_one {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) : (cospan f g).obj WalkingCospan.one = Z :=
   rfl
 #align category_theory.limits.cospan_one CategoryTheory.Limits.cospan_one
 
+/- warning: category_theory.limits.span_zero -> CategoryTheory.Limits.span_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) X
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u2} C (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) X
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_zero CategoryTheory.Limits.span_zeroₓ'. -/
 @[simp]
 theorem span_zero {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).obj WalkingSpan.zero = X :=
   rfl
 #align category_theory.limits.span_zero CategoryTheory.Limits.span_zero
 
+/- warning: category_theory.limits.cospan_map_inl -> CategoryTheory.Limits.cospan_map_inl is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) f
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) f
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_inl CategoryTheory.Limits.cospan_map_inlₓ'. -/
 @[simp]
 theorem cospan_map_inl {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inl = f :=
   rfl
 #align category_theory.limits.cospan_map_inl CategoryTheory.Limits.cospan_map_inl
 
+/- warning: category_theory.limits.span_map_fst -> CategoryTheory.Limits.span_map_fst is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) f
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) f
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_fst CategoryTheory.Limits.span_map_fstₓ'. -/
 @[simp]
 theorem span_map_fst {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.fst = f :=
   rfl
 #align category_theory.limits.span_map_fst CategoryTheory.Limits.span_map_fst
 
+/- warning: category_theory.limits.cospan_map_inr -> CategoryTheory.Limits.cospan_map_inr is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) g
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) g
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_inr CategoryTheory.Limits.cospan_map_inrₓ'. -/
 @[simp]
 theorem cospan_map_inr {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     (cospan f g).map WalkingCospan.Hom.inr = g :=
   rfl
 #align category_theory.limits.cospan_map_inr CategoryTheory.Limits.cospan_map_inr
 
+/- warning: category_theory.limits.span_map_snd -> CategoryTheory.Limits.span_map_snd is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) g
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) g
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_snd CategoryTheory.Limits.span_map_sndₓ'. -/
 @[simp]
 theorem span_map_snd {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) : (span f g).map WalkingSpan.Hom.snd = g :=
   rfl
 #align category_theory.limits.span_map_snd CategoryTheory.Limits.span_map_snd
 
+/- warning: category_theory.limits.cospan_map_id -> CategoryTheory.Limits.cospan_map_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) (w : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w w (CategoryTheory.Limits.WalkingCospan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) w))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) (w : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w w (CategoryTheory.Limits.WalkingCospan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) w))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_map_id CategoryTheory.Limits.cospan_map_idₓ'. -/
 theorem cospan_map_id {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) (w : WalkingCospan) :
     (cospan f g).map (WalkingCospan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_map_id CategoryTheory.Limits.cospan_map_id
 
+/- warning: category_theory.limits.span_map_id -> CategoryTheory.Limits.span_map_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (w : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w)) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w w (CategoryTheory.Limits.WalkingSpan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) w))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (w : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w)) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w w (CategoryTheory.Limits.WalkingSpan.Hom.id w)) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) w))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_idₓ'. -/
 theorem span_map_id {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) (w : WalkingSpan) :
     (span f g).map (WalkingSpan.Hom.id w) = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_id
 
+/- warning: category_theory.limits.diagram_iso_cospan -> CategoryTheory.Limits.diagramIsoCospan is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.diagram_iso_cospan CategoryTheory.Limits.diagramIsoCospanₓ'. -/
 /-- Every diagram indexing an pullback is naturally isomorphic (actually, equal) to a `cospan` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoCospan (F : WalkingCospan ⥤ C) : F ≅ cospan (F.map inl) (F.map inr) :=
   NatIso.ofComponents (fun j => eqToIso (by tidy)) (by tidy)
 #align category_theory.limits.diagram_iso_cospan CategoryTheory.Limits.diagramIsoCospan
 
+/- warning: category_theory.limits.diagram_iso_span -> CategoryTheory.Limits.diagramIsoSpan is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] (F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.diagram_iso_span CategoryTheory.Limits.diagramIsoSpanₓ'. -/
 /-- Every diagram indexing a pushout is naturally isomorphic (actually, equal) to a `span` -/
 @[simps (config := { rhsMd := semireducible })]
 def diagramIsoSpan (F : WalkingSpan ⥤ C) : F ≅ span (F.map fst) (F.map snd) :=
@@ -277,6 +409,12 @@ def diagramIsoSpan (F : WalkingSpan ⥤ C) : F ≅ span (F.map fst) (F.map snd)
 
 variable {D : Type u₂} [Category.{v₂} D]
 
+/- warning: category_theory.limits.cospan_comp_iso -> CategoryTheory.Limits.cospanCompIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), CategoryTheory.Iso.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), CategoryTheory.Iso.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso CategoryTheory.Limits.cospanCompIsoₓ'. -/
 /-- A functor applied to a cospan is a cospan. -/
 def cospanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :
     cospan f g ⋙ F ≅ cospan (F.map f) (F.map g) :=
@@ -288,46 +426,100 @@ section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
 
+/- warning: category_theory.limits.cospan_comp_iso_app_left -> CategoryTheory.Limits.cospanCompIso_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_app_left : (cospanCompIso F f g).app WalkingCospan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_left CategoryTheory.Limits.cospanCompIso_app_left
 
+/- warning: category_theory.limits.cospan_comp_iso_app_right -> CategoryTheory.Limits.cospanCompIso_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_app_right : (cospanCompIso F f g).app WalkingCospan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_right CategoryTheory.Limits.cospanCompIso_app_right
 
+/- warning: category_theory.limits.cospan_comp_iso_app_one -> CategoryTheory.Limits.cospanCompIso_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_app_one : (cospanCompIso F f g).app WalkingCospan.one = Iso.refl _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_app_one CategoryTheory.Limits.cospanCompIso_app_one
 
+/- warning: category_theory.limits.cospan_comp_iso_hom_app_left -> CategoryTheory.Limits.cospanCompIso_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_left : (cospanCompIso F f g).Hom.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_left CategoryTheory.Limits.cospanCompIso_hom_app_left
 
+/- warning: category_theory.limits.cospan_comp_iso_hom_app_right -> CategoryTheory.Limits.cospanCompIso_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_right : (cospanCompIso F f g).Hom.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_right CategoryTheory.Limits.cospanCompIso_hom_app_right
 
+/- warning: category_theory.limits.cospan_comp_iso_hom_app_one -> CategoryTheory.Limits.cospanCompIso_hom_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_hom_app_one : (cospanCompIso F f g).Hom.app WalkingCospan.one = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_hom_app_one CategoryTheory.Limits.cospanCompIso_hom_app_one
 
+/- warning: category_theory.limits.cospan_comp_iso_inv_app_left -> CategoryTheory.Limits.cospanCompIso_inv_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_left : (cospanCompIso F f g).inv.app WalkingCospan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_left CategoryTheory.Limits.cospanCompIso_inv_app_left
 
+/- warning: category_theory.limits.cospan_comp_iso_inv_app_right -> CategoryTheory.Limits.cospanCompIso_inv_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_right : (cospanCompIso F f g).inv.app WalkingCospan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.cospan_comp_iso_inv_app_right CategoryTheory.Limits.cospanCompIso_inv_app_right
 
+/- warning: category_theory.limits.cospan_comp_iso_inv_app_one -> CategoryTheory.Limits.cospanCompIso_inv_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y Z g)) CategoryTheory.Limits.WalkingCospan.one))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.cospan.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g)) (CategoryTheory.Limits.cospanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.cospan.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y Z g))) CategoryTheory.Limits.WalkingCospan.one))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_comp_iso_inv_app_one CategoryTheory.Limits.cospanCompIso_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.one = 𝟙 _ :=
   rfl
@@ -335,6 +527,12 @@ theorem cospanCompIso_inv_app_one : (cospanCompIso F f g).inv.app WalkingCospan.
 
 end
 
+/- warning: category_theory.limits.span_comp_iso -> CategoryTheory.Limits.spanCompIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), CategoryTheory.Iso.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), CategoryTheory.Iso.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso CategoryTheory.Limits.spanCompIsoₓ'. -/
 /-- A functor applied to a span is a span. -/
 def spanCompIso (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) :
     span f g ⋙ F ≅ span (F.map f) (F.map g) :=
@@ -346,46 +544,100 @@ section
 
 variable (F : C ⥤ D) {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
 
+/- warning: category_theory.limits.span_comp_iso_app_left -> CategoryTheory.Limits.spanCompIso_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_app_left : (spanCompIso F f g).app WalkingSpan.left = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_left CategoryTheory.Limits.spanCompIso_app_left
 
+/- warning: category_theory.limits.span_comp_iso_app_right -> CategoryTheory.Limits.spanCompIso_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_app_right : (spanCompIso F f g).app WalkingSpan.right = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_right CategoryTheory.Limits.spanCompIso_app_right
 
+/- warning: category_theory.limits.span_comp_iso_app_zero -> CategoryTheory.Limits.spanCompIso_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (CategoryTheory.Iso.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.refl.{u1, u4} D _inst_2 (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_app_zero : (spanCompIso F f g).app WalkingSpan.zero = Iso.refl _ :=
   rfl
 #align category_theory.limits.span_comp_iso_app_zero CategoryTheory.Limits.spanCompIso_app_zero
 
+/- warning: category_theory.limits.span_comp_iso_hom_app_left -> CategoryTheory.Limits.spanCompIso_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_left : (spanCompIso F f g).Hom.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_left CategoryTheory.Limits.spanCompIso_hom_app_left
 
+/- warning: category_theory.limits.span_comp_iso_hom_app_right -> CategoryTheory.Limits.spanCompIso_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_right : (spanCompIso F f g).Hom.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_right CategoryTheory.Limits.spanCompIso_hom_app_right
 
+/- warning: category_theory.limits.span_comp_iso_hom_app_zero -> CategoryTheory.Limits.spanCompIso_hom_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Iso.hom.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Iso.hom.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_hom_app_zero : (spanCompIso F f g).Hom.app WalkingSpan.zero = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_hom_app_zero CategoryTheory.Limits.spanCompIso_hom_app_zero
 
+/- warning: category_theory.limits.span_comp_iso_inv_app_left -> CategoryTheory.Limits.spanCompIso_inv_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.left))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_leftₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_left : (spanCompIso F f g).inv.app WalkingSpan.left = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_left CategoryTheory.Limits.spanCompIso_inv_app_left
 
+/- warning: category_theory.limits.span_comp_iso_inv_app_right -> CategoryTheory.Limits.spanCompIso_inv_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.right))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_rightₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_right : (spanCompIso F f g).inv.app WalkingSpan.right = 𝟙 _ :=
   rfl
 #align category_theory.limits.span_comp_iso_inv_app_right CategoryTheory.Limits.spanCompIso_inv_app_right
 
+/- warning: category_theory.limits.span_comp_iso_inv_app_zero -> CategoryTheory.Limits.spanCompIso_inv_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u1 u4} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 F Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 F X Z g)) CategoryTheory.Limits.WalkingSpan.zero))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] (F : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Iso.inv.{u1, max u4 u1} (CategoryTheory.Functor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.category.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2) (CategoryTheory.Functor.comp.{0, u2, u1, 0, u3, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 D _inst_2 (CategoryTheory.Limits.span.{u2, u3} C _inst_1 X Y Z f g) F) (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g)) (CategoryTheory.Limits.spanCompIso.{u1, u2, u3, u4} C _inst_1 D _inst_2 F X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.id.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{1, succ u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u4} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) D _inst_2 (CategoryTheory.Limits.span.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 F) X Z g))) CategoryTheory.Limits.WalkingSpan.zero))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_comp_iso_inv_app_zero CategoryTheory.Limits.spanCompIso_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanCompIso_inv_app_zero : (spanCompIso F f g).inv.app WalkingSpan.zero = 𝟙 _ :=
   rfl
@@ -401,6 +653,7 @@ section
 
 variable {f : X ⟶ Z} {g : Y ⟶ Z} {f' : X' ⟶ Z'} {g' : Y' ⟶ Z'}
 
+#print CategoryTheory.Limits.cospanExt /-
 /-- Construct an isomorphism of cospans from components. -/
 def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom) :
     cospan f g ≅ cospan f' g' :=
@@ -410,9 +663,16 @@ def cospanExt (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ
       exacts[iZ, iX, iY])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.cospan_ext CategoryTheory.Limits.cospanExt
+-/
 
 variable (wf : iX.Hom ≫ f' = f ≫ iZ.Hom) (wg : iY.Hom ≫ g' = g ≫ iZ.Hom)
 
+/- warning: category_theory.limits.cospan_ext_app_left -> CategoryTheory.Limits.cospanExt_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.left) iX
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.left) iX
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left = iX :=
   by
@@ -420,6 +680,12 @@ theorem cospanExt_app_left : (cospanExt iX iY iZ wf wg).app WalkingCospan.left =
   simp
 #align category_theory.limits.cospan_ext_app_left CategoryTheory.Limits.cospanExt_app_left
 
+/- warning: category_theory.limits.cospan_ext_app_right -> CategoryTheory.Limits.cospanExt_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.right) iY
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.right) iY
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right = iY :=
   by
@@ -427,6 +693,12 @@ theorem cospanExt_app_right : (cospanExt iX iY iZ wf wg).app WalkingCospan.right
   simp
 #align category_theory.limits.cospan_ext_app_right CategoryTheory.Limits.cospanExt_app_right
 
+/- warning: category_theory.limits.cospan_ext_app_one -> CategoryTheory.Limits.cospanExt_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.one) iZ
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingCospan.one) iZ
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = iZ :=
   by
@@ -434,6 +706,12 @@ theorem cospanExt_app_one : (cospanExt iX iY iZ wf wg).app WalkingCospan.one = i
   simp
 #align category_theory.limits.cospan_ext_app_one CategoryTheory.Limits.cospanExt_app_one
 
+/- warning: category_theory.limits.cospan_ext_hom_app_left -> CategoryTheory.Limits.cospanExt_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.left = iX.Hom :=
   by
@@ -441,6 +719,12 @@ theorem cospanExt_hom_app_left : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospa
   simp
 #align category_theory.limits.cospan_ext_hom_app_left CategoryTheory.Limits.cospanExt_hom_app_left
 
+/- warning: category_theory.limits.cospan_ext_hom_app_right -> CategoryTheory.Limits.cospanExt_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.right = iY.Hom :=
   by
@@ -448,6 +732,12 @@ theorem cospanExt_hom_app_right : (cospanExt iX iY iZ wf wg).Hom.app WalkingCosp
   simp
 #align category_theory.limits.cospan_ext_hom_app_right CategoryTheory.Limits.cospanExt_hom_app_right
 
+/- warning: category_theory.limits.cospan_ext_hom_app_one -> CategoryTheory.Limits.cospanExt_hom_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan.one = iZ.Hom :=
   by
@@ -455,6 +745,12 @@ theorem cospanExt_hom_app_one : (cospanExt iX iY iZ wf wg).Hom.app WalkingCospan
   simp
 #align category_theory.limits.cospan_ext_hom_app_one CategoryTheory.Limits.cospanExt_hom_app_one
 
+/- warning: category_theory.limits.cospan_ext_inv_app_left -> CategoryTheory.Limits.cospanExt_inv_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.left = iX.inv :=
   by
@@ -462,6 +758,12 @@ theorem cospanExt_inv_app_left : (cospanExt iX iY iZ wf wg).inv.app WalkingCospa
   simp
 #align category_theory.limits.cospan_ext_inv_app_left CategoryTheory.Limits.cospanExt_inv_app_left
 
+/- warning: category_theory.limits.cospan_ext_inv_app_right -> CategoryTheory.Limits.cospanExt_inv_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.right = iY.inv :=
   by
@@ -469,6 +771,12 @@ theorem cospanExt_inv_app_right : (cospanExt iX iY iZ wf wg).inv.app WalkingCosp
   simp
 #align category_theory.limits.cospan_ext_inv_app_right CategoryTheory.Limits.cospanExt_inv_app_right
 
+/- warning: category_theory.limits.cospan_ext_inv_app_one -> CategoryTheory.Limits.cospanExt_inv_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Y' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.cospanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cospan_ext_inv_app_one CategoryTheory.Limits.cospanExt_inv_app_oneₓ'. -/
 @[simp]
 theorem cospanExt_inv_app_one : (cospanExt iX iY iZ wf wg).inv.app WalkingCospan.one = iZ.inv :=
   by
@@ -482,6 +790,7 @@ section
 
 variable {f : X ⟶ Y} {g : X ⟶ Z} {f' : X' ⟶ Y'} {g' : X' ⟶ Z'}
 
+#print CategoryTheory.Limits.spanExt /-
 /-- Construct an isomorphism of spans from components. -/
 def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom) :
     span f g ≅ span f' g' :=
@@ -491,9 +800,16 @@ def spanExt (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.H
       exacts[iX, iY, iZ])
     (by rintro (⟨⟩ | ⟨⟨⟩⟩) (⟨⟩ | ⟨⟨⟩⟩) ⟨⟩ <;> repeat' dsimp; simp [wf, wg])
 #align category_theory.limits.span_ext CategoryTheory.Limits.spanExt
+-/
 
 variable (wf : iX.Hom ≫ f' = f ≫ iY.Hom) (wg : iX.Hom ≫ g' = g ≫ iZ.Hom)
 
+/- warning: category_theory.limits.span_ext_app_left -> CategoryTheory.Limits.spanExt_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.left) iY
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.left) iY
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_leftₓ'. -/
 @[simp]
 theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY :=
   by
@@ -501,6 +817,12 @@ theorem spanExt_app_left : (spanExt iX iY iZ wf wg).app WalkingSpan.left = iY :=
   simp
 #align category_theory.limits.span_ext_app_left CategoryTheory.Limits.spanExt_app_left
 
+/- warning: category_theory.limits.span_ext_app_right -> CategoryTheory.Limits.spanExt_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.right) iZ
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.right) iZ
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_rightₓ'. -/
 @[simp]
 theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ :=
   by
@@ -508,6 +830,12 @@ theorem spanExt_app_right : (spanExt iX iY iZ wf wg).app WalkingSpan.right = iZ
   simp
 #align category_theory.limits.span_ext_app_right CategoryTheory.Limits.spanExt_app_right
 
+/- warning: category_theory.limits.span_ext_app_one -> CategoryTheory.Limits.spanExt_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.zero) iX
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.Iso.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg) CategoryTheory.Limits.WalkingSpan.zero) iX
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_oneₓ'. -/
 @[simp]
 theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
   by
@@ -515,6 +843,12 @@ theorem spanExt_app_one : (spanExt iX iY iZ wf wg).app WalkingSpan.zero = iX :=
   simp
 #align category_theory.limits.span_ext_app_one CategoryTheory.Limits.spanExt_app_one
 
+/- warning: category_theory.limits.span_ext_hom_app_left -> CategoryTheory.Limits.spanExt_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_leftₓ'. -/
 @[simp]
 theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left = iY.Hom :=
   by
@@ -522,6 +856,12 @@ theorem spanExt_hom_app_left : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.left
   simp
 #align category_theory.limits.span_ext_hom_app_left CategoryTheory.Limits.spanExt_hom_app_left
 
+/- warning: category_theory.limits.span_ext_hom_app_right -> CategoryTheory.Limits.spanExt_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_rightₓ'. -/
 @[simp]
 theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.right = iZ.Hom :=
   by
@@ -529,6 +869,12 @@ theorem spanExt_hom_app_right : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.rig
   simp
 #align category_theory.limits.span_ext_hom_app_right CategoryTheory.Limits.spanExt_hom_app_right
 
+/- warning: category_theory.limits.span_ext_hom_app_zero -> CategoryTheory.Limits.spanExt_hom_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Iso.hom.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero = iX.Hom :=
   by
@@ -536,6 +882,12 @@ theorem spanExt_hom_app_zero : (spanExt iX iY iZ wf wg).Hom.app WalkingSpan.zero
   simp
 #align category_theory.limits.span_ext_hom_app_zero CategoryTheory.Limits.spanExt_hom_app_zero
 
+/- warning: category_theory.limits.span_ext_inv_app_left -> CategoryTheory.Limits.spanExt_inv_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Y Y' iY)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_leftₓ'. -/
 @[simp]
 theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left = iY.inv :=
   by
@@ -543,6 +895,12 @@ theorem spanExt_inv_app_left : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.left
   simp
 #align category_theory.limits.span_ext_inv_app_left CategoryTheory.Limits.spanExt_inv_app_left
 
+/- warning: category_theory.limits.span_ext_inv_app_right -> CategoryTheory.Limits.spanExt_inv_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 Z Z' iZ)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_rightₓ'. -/
 @[simp]
 theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.right = iZ.inv :=
   by
@@ -550,6 +908,12 @@ theorem spanExt_inv_app_right : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.rig
   simp
 #align category_theory.limits.span_ext_inv_app_right CategoryTheory.Limits.spanExt_inv_app_right
 
+/- warning: category_theory.limits.span_ext_inv_app_zero -> CategoryTheory.Limits.spanExt_inv_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : CategoryTheory.Iso.{u1, u2} C _inst_1 X X') (iY : CategoryTheory.Iso.{u1, u2} C _inst_1 Y Y') (iZ : CategoryTheory.Iso.{u1, u2} C _inst_1 Z Z') {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {f' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Y'} {g' : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X' Z'} (wf : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Y' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) f') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y Y' f (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Y Y' iY))) (wg : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X X' Z' (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 X X' iX) g') (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Z' g (CategoryTheory.Iso.hom.{u1, u2} C _inst_1 Z Z' iZ))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g')) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Iso.inv.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X' Y' Z' f' g') (CategoryTheory.Limits.spanExt.{u1, u2} C _inst_1 X Y Z X' Y' Z' iX iY iZ f g f' g' wf wg)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Iso.inv.{u1, u2} C _inst_1 X X' iX)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.span_ext_inv_app_zero CategoryTheory.Limits.spanExt_inv_app_zeroₓ'. -/
 @[simp]
 theorem spanExt_inv_app_zero : (spanExt iX iY iZ wf wg).inv.app WalkingSpan.zero = iX.inv :=
   by
@@ -563,36 +927,60 @@ end
 
 variable {W X Y Z : C}
 
+#print CategoryTheory.Limits.PullbackCone /-
 /-- A pullback cone is just a cone on the cospan formed by two morphisms `f : X ⟶ Z` and
     `g : Y ⟶ Z`.-/
 abbrev PullbackCone (f : X ⟶ Z) (g : Y ⟶ Z) :=
   Cone (cospan f g)
 #align category_theory.limits.pullback_cone CategoryTheory.Limits.PullbackCone
+-/
 
 namespace PullbackCone
 
 variable {f : X ⟶ Z} {g : Y ⟶ Z}
 
+#print CategoryTheory.Limits.PullbackCone.fst /-
 /-- The first projection of a pullback cone. -/
 abbrev fst (t : PullbackCone f g) : t.pt ⟶ X :=
   t.π.app WalkingCospan.left
 #align category_theory.limits.pullback_cone.fst CategoryTheory.Limits.PullbackCone.fst
+-/
 
+#print CategoryTheory.Limits.PullbackCone.snd /-
 /-- The second projection of a pullback cone. -/
 abbrev snd (t : PullbackCone f g) : t.pt ⟶ Y :=
   t.π.app WalkingCospan.right
 #align category_theory.limits.pullback_cone.snd CategoryTheory.Limits.PullbackCone.snd
+-/
 
+/- warning: category_theory.limits.pullback_cone.π_app_left -> CategoryTheory.Limits.PullbackCone.π_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g c)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g c)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.π_app_left CategoryTheory.Limits.PullbackCone.π_app_leftₓ'. -/
 @[simp]
 theorem π_app_left (c : PullbackCone f g) : c.π.app WalkingCospan.left = c.fst :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_left CategoryTheory.Limits.PullbackCone.π_app_left
 
+/- warning: category_theory.limits.pullback_cone.π_app_right -> CategoryTheory.Limits.PullbackCone.π_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g c)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (c : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g c)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_rightₓ'. -/
 @[simp]
 theorem π_app_right (c : PullbackCone f g) : c.π.app WalkingCospan.right = c.snd :=
   rfl
 #align category_theory.limits.pullback_cone.π_app_right CategoryTheory.Limits.PullbackCone.π_app_right
 
+/- warning: category_theory.limits.pullback_cone.condition_one -> CategoryTheory.Limits.PullbackCone.condition_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingCospan.one) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t) f)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X Z (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_oneₓ'. -/
 @[simp]
 theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fst ≫ f :=
   by
@@ -600,6 +988,12 @@ theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fs
   dsimp at w; simpa using w
 #align category_theory.limits.pullback_cone.condition_one CategoryTheory.Limits.PullbackCone.condition_one
 
+/- warning: category_theory.limits.pullback_cone.is_limit_aux -> CategoryTheory.Limits.PullbackCone.isLimitAux is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (lift : forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X (lift s) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y (lift s) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) m (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) m (lift s))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (lift : forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X (lift s) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y (lift s) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)), (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) m (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) m (lift s))) -> (CategoryTheory.Limits.IsLimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content -/
 def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶ t.pt)
@@ -620,6 +1014,7 @@ def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶
     uniq := uniq }
 #align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAux
 
+#print CategoryTheory.Limits.PullbackCone.isLimitAux' /-
 /-- This is another convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content, and allows access to the
     same `s` for all parts. -/
@@ -634,7 +1029,9 @@ def isLimitAux' (t : PullbackCone f g)
     (fun s => (create s).2.2.1) fun s m w =>
     (create s).2.2.2 (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pullback_cone.is_limit_aux' CategoryTheory.Limits.PullbackCone.isLimitAux'
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mk /-
 /-- A pullback cone on `f` and `g` is determined by morphisms `fst : W ⟶ X` and `snd : W ⟶ Y`
     such that `fst ≫ f = snd ≫ g`. -/
 @[simps]
@@ -643,42 +1040,73 @@ def mk {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) : Pu
   pt := W
   π := { app := fun j => Option.casesOn j (fst ≫ f) fun j' => WalkingPair.casesOn j' fst snd }
 #align category_theory.limits.pullback_cone.mk CategoryTheory.Limits.PullbackCone.mk
+-/
 
+/- warning: category_theory.limits.pullback_cone.mk_π_app_left -> CategoryTheory.Limits.PullbackCone.mk_π_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.left) fst
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.left) fst
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_leftₓ'. -/
 @[simp]
 theorem mk_π_app_left {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.left = fst :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_left CategoryTheory.Limits.PullbackCone.mk_π_app_left
 
+/- warning: category_theory.limits.pullback_cone.mk_π_app_right -> CategoryTheory.Limits.PullbackCone.mk_π_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.right) snd
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.right) snd
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_rightₓ'. -/
 @[simp]
 theorem mk_π_app_right {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.right = snd :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_right CategoryTheory.Limits.PullbackCone.mk_π_app_right
 
+/- warning: category_theory.limits.pullback_cone.mk_π_app_one -> CategoryTheory.Limits.PullbackCone.mk_π_app_one is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) CategoryTheory.Limits.WalkingCospan.one) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.one) fst f)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} {W : C} (fst : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (snd : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W Y Z snd g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 X Y Z f g W fst snd eq)) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W X Z fst f)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.mk_π_app_one CategoryTheory.Limits.PullbackCone.mk_π_app_oneₓ'. -/
 @[simp]
 theorem mk_π_app_one {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).π.app WalkingCospan.one = fst ≫ f :=
   rfl
 #align category_theory.limits.pullback_cone.mk_π_app_one CategoryTheory.Limits.PullbackCone.mk_π_app_one
 
+#print CategoryTheory.Limits.PullbackCone.mk_fst /-
 @[simp]
 theorem mk_fst {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).fst = fst :=
   rfl
 #align category_theory.limits.pullback_cone.mk_fst CategoryTheory.Limits.PullbackCone.mk_fst
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mk_snd /-
 @[simp]
 theorem mk_snd {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) :
     (mk fst snd Eq).snd = snd :=
   rfl
 #align category_theory.limits.pullback_cone.mk_snd CategoryTheory.Limits.PullbackCone.mk_snd
+-/
 
+#print CategoryTheory.Limits.PullbackCone.condition /-
 @[reassoc.1]
 theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
   (t.w inl).trans (t.w inr).symm
 #align category_theory.limits.pullback_cone.condition CategoryTheory.Limits.PullbackCone.condition
+-/
 
+/- warning: category_theory.limits.pullback_cone.equalizer_ext -> CategoryTheory.Limits.PullbackCone.equalizer_ext is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X k (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X l (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y k (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y l (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t))) -> (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) k (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) j) l (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z} (t : CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W X) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X k (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) X l (CategoryTheory.Limits.PullbackCone.fst.{u1, u2} C _inst_1 X Y Z f g t))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W Y) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y k (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) Y l (CategoryTheory.Limits.PullbackCone.snd.{u1, u2} C _inst_1 X Y Z f g t))) -> (forall (j : CategoryTheory.Limits.WalkingCospan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) W (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) k (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) W (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) j) l (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) t) j)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_extₓ'. -/
 /-- To check whether a morphism is equalized by the maps of a pullback cone, it suffices to check
   it for `fst t` and `snd t` -/
 theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ : k ≫ fst t = l ≫ fst t)
@@ -688,28 +1116,37 @@ theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ :
   | none => by rw [← t.w inl, reassoc_of h₀]
 #align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_ext
 
+#print CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext /-
 theorem IsLimit.hom_ext {t : PullbackCone f g} (ht : IsLimit t) {W : C} {k l : W ⟶ t.pt}
     (h₀ : k ≫ fst t = l ≫ fst t) (h₁ : k ≫ snd t = l ≫ snd t) : k = l :=
   ht.hom_ext <| equalizer_ext _ h₀ h₁
 #align category_theory.limits.pullback_cone.is_limit.hom_ext CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono /-
 theorem mono_snd_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t) [Mono f] :
     Mono t.snd :=
   ⟨fun W h k i => IsLimit.hom_ext ht (by simp [← cancel_mono f, t.condition, reassoc_of i]) i⟩
 #align category_theory.limits.pullback_cone.mono_snd_of_is_pullback_of_mono CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono /-
 theorem mono_fst_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t) [Mono g] :
     Mono t.fst :=
   ⟨fun W h k i => IsLimit.hom_ext ht i (by simp [← cancel_mono g, ← t.condition, reassoc_of i])⟩
 #align category_theory.limits.pullback_cone.mono_fst_of_is_pullback_of_mono CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono
+-/
 
+#print CategoryTheory.Limits.PullbackCone.ext /-
 /-- To construct an isomorphism of pullback cones, it suffices to construct an isomorphism
 of the cone points and check it commutes with `fst` and `snd`. -/
 def ext {s t : PullbackCone f g} (i : s.pt ≅ t.pt) (w₁ : s.fst = i.Hom ≫ t.fst)
     (w₂ : s.snd = i.Hom ≫ t.snd) : s ≅ t :=
   WalkingCospan.ext i w₁ w₂
 #align category_theory.limits.pullback_cone.ext CategoryTheory.Limits.PullbackCone.ext
+-/
 
+#print CategoryTheory.Limits.PullbackCone.IsLimit.lift' /-
 /-- If `t` is a limit pullback cone over `f` and `g` and `h : W ⟶ X` and `k : W ⟶ Y` are such that
     `h ≫ f = k ≫ g`, then we have `l : W ⟶ t.X` satisfying `l ≫ fst t = h` and `l ≫ snd t = k`.
     -/
@@ -717,7 +1154,9 @@ def IsLimit.lift' {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X)
     (w : h ≫ f = k ≫ g) : { l : W ⟶ t.pt // l ≫ fst t = h ∧ l ≫ snd t = k } :=
   ⟨ht.lift <| PullbackCone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
 #align category_theory.limits.pullback_cone.is_limit.lift' CategoryTheory.Limits.PullbackCone.IsLimit.lift'
+-/
 
+#print CategoryTheory.Limits.PullbackCone.IsLimit.mk /-
 /-- This is a more convenient formulation to show that a `pullback_cone` constructed using
 `pullback_cone.mk` is a limit cone.
 -/
@@ -732,7 +1171,9 @@ def IsLimit.mk {W : C} {fst : W ⟶ X} {snd : W ⟶ Y} (eq : fst ≫ f = snd ≫
   isLimitAux _ lift fac_left fac_right fun s m w =>
     uniq s m (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pullback_cone.is_limit.mk CategoryTheory.Limits.PullbackCone.IsLimit.mk
+-/
 
+#print CategoryTheory.Limits.PullbackCone.flipIsLimit /-
 /-- The flip of a pullback square is a pullback square. -/
 def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
     (t : IsLimit (mk _ _ comm.symm)) : IsLimit (mk _ _ comm) :=
@@ -745,7 +1186,9 @@ def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
     · rwa [(is_limit.lift' t _ _ _).2.1]
     · rwa [(is_limit.lift' t _ _ _).2.2]
 #align category_theory.limits.pullback_cone.flip_is_limit CategoryTheory.Limits.PullbackCone.flipIsLimit
+-/
 
+#print CategoryTheory.Limits.PullbackCone.isLimitMkIdId /-
 /--
 The pullback cone `(𝟙 X, 𝟙 X)` for the pair `(f, f)` is a limit if `f` is a mono. The converse is
 shown in `mono_of_pullback_is_id`.
@@ -755,18 +1198,22 @@ def isLimitMkIdId (f : X ⟶ Y) [Mono f] : IsLimit (mk (𝟙 X) (𝟙 X) rfl : P
     (fun s => by rw [← cancel_mono f, category.comp_id, s.condition]) fun s m m₁ m₂ => by
     simpa using m₁
 #align category_theory.limits.pullback_cone.is_limit_mk_id_id CategoryTheory.Limits.PullbackCone.isLimitMkIdId
+-/
 
+#print CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId /-
 /--
 `f` is a mono if the pullback cone `(𝟙 X, 𝟙 X)` is a limit for the pair `(f, f)`. The converse is
 given in `pullback_cone.is_id_of_mono`.
 -/
-theorem mono_of_isLimit_mk_id_id (f : X ⟶ Y) (t : IsLimit (mk (𝟙 X) (𝟙 X) rfl : PullbackCone f f)) :
+theorem mono_of_isLimitMkIdId (f : X ⟶ Y) (t : IsLimit (mk (𝟙 X) (𝟙 X) rfl : PullbackCone f f)) :
     Mono f :=
   ⟨fun Z g h eq => by
     rcases pullback_cone.is_limit.lift' t _ _ Eq with ⟨_, rfl, rfl⟩
     rfl⟩
-#align category_theory.limits.pullback_cone.mono_of_is_limit_mk_id_id CategoryTheory.Limits.PullbackCone.mono_of_isLimit_mk_id_id
+#align category_theory.limits.pullback_cone.mono_of_is_limit_mk_id_id CategoryTheory.Limits.PullbackCone.mono_of_isLimitMkIdId
+-/
 
+#print CategoryTheory.Limits.PullbackCone.isLimitOfFactors /-
 /-- Suppose `f` and `g` are two morphisms with a common codomain and `s` is a limit cone over the
     diagram formed by `f` and `g`. Suppose `f` and `g` both factor through a monomorphism `h` via
     `x` and `y`, respectively.  Then `s` is also a limit cone over the diagram formed by `x` and
@@ -787,7 +1234,9 @@ def isLimitOfFactors (f : X ⟶ Z) (g : Y ⟶ Z) (h : W ⟶ Z) [Mono h] (x : X 
           symm
         exacts[hs.fac _ walking_cospan.left, hs.fac _ walking_cospan.right]⟩⟩
 #align category_theory.limits.pullback_cone.is_limit_of_factors CategoryTheory.Limits.PullbackCone.isLimitOfFactors
+-/
 
+#print CategoryTheory.Limits.PullbackCone.isLimitOfCompMono /-
 /-- If `W` is the pullback of `f, g`,
 it is also the pullback of `f ≫ i, g ≫ i` for any mono `i`. -/
 def isLimitOfCompMono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i] (s : PullbackCone f g)
@@ -806,39 +1255,64 @@ def isLimitOfCompMono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i] (s : Pu
   intro m hm₁ hm₂
   exact (pullback_cone.is_limit.hom_ext H (hm₁.trans h₁.symm) (hm₂.trans h₂.symm) : _)
 #align category_theory.limits.pullback_cone.is_limit_of_comp_mono CategoryTheory.Limits.PullbackCone.isLimitOfCompMono
+-/
 
 end PullbackCone
 
+#print CategoryTheory.Limits.PushoutCocone /-
 /-- A pushout cocone is just a cocone on the span formed by two morphisms `f : X ⟶ Y` and
     `g : X ⟶ Z`.-/
 abbrev PushoutCocone (f : X ⟶ Y) (g : X ⟶ Z) :=
   Cocone (span f g)
 #align category_theory.limits.pushout_cocone CategoryTheory.Limits.PushoutCocone
+-/
 
 namespace PushoutCocone
 
 variable {f : X ⟶ Y} {g : X ⟶ Z}
 
+#print CategoryTheory.Limits.PushoutCocone.inl /-
 /-- The first inclusion of a pushout cocone. -/
 abbrev inl (t : PushoutCocone f g) : Y ⟶ t.pt :=
   t.ι.app WalkingSpan.left
 #align category_theory.limits.pushout_cocone.inl CategoryTheory.Limits.PushoutCocone.inl
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.inr /-
 /-- The second inclusion of a pushout cocone. -/
 abbrev inr (t : PushoutCocone f g) : Z ⟶ t.pt :=
   t.ι.app WalkingSpan.right
 #align category_theory.limits.pushout_cocone.inr CategoryTheory.Limits.PushoutCocone.inr
+-/
 
+/- warning: category_theory.limits.pushout_cocone.ι_app_left -> CategoryTheory.Limits.PushoutCocone.ι_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g c)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g c)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.ι_app_left CategoryTheory.Limits.PushoutCocone.ι_app_leftₓ'. -/
 @[simp]
 theorem ι_app_left (c : PushoutCocone f g) : c.ι.app WalkingSpan.left = c.inl :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_left CategoryTheory.Limits.PushoutCocone.ι_app_left
 
+/- warning: category_theory.limits.pushout_cocone.ι_app_right -> CategoryTheory.Limits.PushoutCocone.ι_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g c)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (c : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) c) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g c)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_rightₓ'. -/
 @[simp]
 theorem ι_app_right (c : PushoutCocone f g) : c.ι.app WalkingSpan.right = c.inr :=
   rfl
 #align category_theory.limits.pushout_cocone.ι_app_right CategoryTheory.Limits.PushoutCocone.ι_app_right
 
+/- warning: category_theory.limits.pushout_cocone.condition_zero -> CategoryTheory.Limits.PushoutCocone.condition_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) Y (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) CategoryTheory.Limits.WalkingSpan.zero) f (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) f (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zeroₓ'. -/
 @[simp]
 theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f ≫ t.inl :=
   by
@@ -846,6 +1320,12 @@ theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f 
   dsimp at w; simpa using w.symm
 #align category_theory.limits.pushout_cocone.condition_zero CategoryTheory.Limits.PushoutCocone.condition_zero
 
+/- warning: category_theory.limits.pushout_cocone.is_colimit_aux -> CategoryTheory.Limits.PushoutCocone.isColimitAux is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (desc : forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) m) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) m (desc s))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (desc : forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) (desc s)) (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g s)) -> (forall (s : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) (m : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)), (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) m) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) s)) m (desc s))) -> (CategoryTheory.Limits.IsColimit.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAuxₓ'. -/
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
     It only asks for a proof of facts that carry any mathematical content -/
 def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt ⟶ s.pt)
@@ -862,6 +1342,7 @@ def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt
     uniq := uniq }
 #align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAux
 
+#print CategoryTheory.Limits.PushoutCocone.isColimitAux' /-
 /-- This is another convenient method to verify that a pushout cocone is a colimit cocone. It
     only asks for a proof of facts that carry any mathematical content, and allows access to the
     same `s` for all parts. -/
@@ -875,7 +1356,9 @@ def isColimitAux' (t : PushoutCocone f g)
   isColimitAux t (fun s => (create s).1) (fun s => (create s).2.1) (fun s => (create s).2.2.1)
     fun s m w => (create s).2.2.2 (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pushout_cocone.is_colimit_aux' CategoryTheory.Limits.PushoutCocone.isColimitAux'
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.mk /-
 /-- A pushout cocone on `f` and `g` is determined by morphisms `inl : Y ⟶ W` and `inr : Z ⟶ W` such
     that `f ≫ inl = g ↠ inr`. -/
 @[simps]
@@ -884,42 +1367,73 @@ def mk {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) : Pu
   pt := W
   ι := { app := fun j => Option.casesOn j (f ≫ inl) fun j' => WalkingPair.casesOn j' inl inr }
 #align category_theory.limits.pushout_cocone.mk CategoryTheory.Limits.PushoutCocone.mk
+-/
 
+/- warning: category_theory.limits.pushout_cocone.mk_ι_app_left -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.left) inl
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.left) inl
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_leftₓ'. -/
 @[simp]
 theorem mk_ι_app_left {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.left = inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_left CategoryTheory.Limits.PushoutCocone.mk_ι_app_left
 
+/- warning: category_theory.limits.pushout_cocone.mk_ι_app_right -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.right) inr
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.right) inr
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_rightₓ'. -/
 @[simp]
 theorem mk_ι_app_right {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.right = inr :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_right CategoryTheory.Limits.PushoutCocone.mk_ι_app_right
 
+/- warning: category_theory.limits.pushout_cocone.mk_ι_app_zero -> CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.zero) Y (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) CategoryTheory.Limits.WalkingSpan.zero) f inl)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} {W : C} (inl : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (inr : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (eq : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z W g inr)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)))) CategoryTheory.Limits.WalkingSpan.zero)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 X Y Z f g W inl inr eq)) CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Y W f inl)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.mk_ι_app_zero CategoryTheory.Limits.PushoutCocone.mk_ι_app_zeroₓ'. -/
 @[simp]
 theorem mk_ι_app_zero {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).ι.app WalkingSpan.zero = f ≫ inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_ι_app_zero CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero
 
+#print CategoryTheory.Limits.PushoutCocone.mk_inl /-
 @[simp]
 theorem mk_inl {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).inl = inl :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_inl CategoryTheory.Limits.PushoutCocone.mk_inl
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.mk_inr /-
 @[simp]
 theorem mk_inr {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) :
     (mk inl inr Eq).inr = inr :=
   rfl
 #align category_theory.limits.pushout_cocone.mk_inr CategoryTheory.Limits.PushoutCocone.mk_inr
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.condition /-
 @[reassoc.1]
 theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
   (t.w fst).trans (t.w snd).symm
 #align category_theory.limits.pushout_cocone.condition CategoryTheory.Limits.PushoutCocone.condition
+-/
 
+/- warning: category_theory.limits.pushout_cocone.coequalizer_ext -> CategoryTheory.Limits.PushoutCocone.coequalizer_ext is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) j) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) l))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} {f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y} {g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z} (t : CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 X Y Z f g) {W : C} {k : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W} {l : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W}, (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inl.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Z W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) W (CategoryTheory.Limits.PushoutCocone.inr.{u1, u2} C _inst_1 X Y Z f g t) l)) -> (forall (j : CategoryTheory.Limits.WalkingSpan), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) W) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) k) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) j) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t))) j) W (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) t) j) l))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_extₓ'. -/
 /-- To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check
   it for `inl t` and `inr t` -/
 theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
@@ -930,11 +1444,14 @@ theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
   | none => by rw [← t.w fst, category.assoc, category.assoc, h₀]
 #align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_ext
 
+#print CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext /-
 theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k l : t.pt ⟶ W}
     (h₀ : inl t ≫ k = inl t ≫ l) (h₁ : inr t ≫ k = inr t ≫ l) : k = l :=
   ht.hom_ext <| coequalizer_ext _ h₀ h₁
 #align category_theory.limits.pushout_cocone.is_colimit.hom_ext CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.IsColimit.desc' /-
 /-- If `t` is a colimit pushout cocone over `f` and `g` and `h : Y ⟶ W` and `k : Z ⟶ W` are
     morphisms satisfying `f ≫ h = g ≫ k`, then we have a factorization `l : t.X ⟶ W` such that
     `inl t ≫ l = h` and `inr t ≫ l = k`. -/
@@ -942,24 +1459,32 @@ def IsColimit.desc' {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y 
     (w : f ≫ h = g ≫ k) : { l : t.pt ⟶ W // inl t ≫ l = h ∧ inr t ≫ l = k } :=
   ⟨ht.desc <| PushoutCocone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
 #align category_theory.limits.pushout_cocone.is_colimit.desc' CategoryTheory.Limits.PushoutCocone.IsColimit.desc'
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.epi_inr_of_is_pushout_of_epi /-
 theorem epi_inr_of_is_pushout_of_epi {t : PushoutCocone f g} (ht : IsColimit t) [Epi f] :
     Epi t.inr :=
   ⟨fun W h k i => IsColimit.hom_ext ht (by simp [← cancel_epi f, t.condition_assoc, i]) i⟩
 #align category_theory.limits.pushout_cocone.epi_inr_of_is_pushout_of_epi CategoryTheory.Limits.PushoutCocone.epi_inr_of_is_pushout_of_epi
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.epi_inl_of_is_pushout_of_epi /-
 theorem epi_inl_of_is_pushout_of_epi {t : PushoutCocone f g} (ht : IsColimit t) [Epi g] :
     Epi t.inl :=
   ⟨fun W h k i => IsColimit.hom_ext ht i (by simp [← cancel_epi g, ← t.condition_assoc, i])⟩
 #align category_theory.limits.pushout_cocone.epi_inl_of_is_pushout_of_epi CategoryTheory.Limits.PushoutCocone.epi_inl_of_is_pushout_of_epi
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.ext /-
 /-- To construct an isomorphism of pushout cocones, it suffices to construct an isomorphism
 of the cocone points and check it commutes with `inl` and `inr`. -/
 def ext {s t : PushoutCocone f g} (i : s.pt ≅ t.pt) (w₁ : s.inl ≫ i.Hom = t.inl)
     (w₂ : s.inr ≫ i.Hom = t.inr) : s ≅ t :=
   WalkingSpan.ext i w₁ w₂
 #align category_theory.limits.pushout_cocone.ext CategoryTheory.Limits.PushoutCocone.ext
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.IsColimit.mk /-
 /-- This is a more convenient formulation to show that a `pushout_cocone` constructed using
 `pushout_cocone.mk` is a colimit cocone.
 -/
@@ -974,7 +1499,9 @@ def IsColimit.mk {W : C} {inl : Y ⟶ W} {inr : Z ⟶ W} (eq : f ≫ inl = g ≫
   isColimitAux _ desc fac_left fac_right fun s m w =>
     uniq s m (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pushout_cocone.is_colimit.mk CategoryTheory.Limits.PushoutCocone.IsColimit.mk
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.flipIsColimit /-
 /-- The flip of a pushout square is a pushout square. -/
 def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
     (t : IsColimit (mk _ _ comm.symm)) : IsColimit (mk _ _ comm) :=
@@ -987,7 +1514,9 @@ def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
     · rwa [(is_colimit.desc' t _ _ _).2.1]
     · rwa [(is_colimit.desc' t _ _ _).2.2]
 #align category_theory.limits.pushout_cocone.flip_is_colimit CategoryTheory.Limits.PushoutCocone.flipIsColimit
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.isColimitMkIdId /-
 /--
 The pushout cocone `(𝟙 X, 𝟙 X)` for the pair `(f, f)` is a colimit if `f` is an epi. The converse is
 shown in `epi_of_is_colimit_mk_id_id`.
@@ -997,18 +1526,22 @@ def isColimitMkIdId (f : X ⟶ Y) [Epi f] : IsColimit (mk (𝟙 Y) (𝟙 Y) rfl
     (fun s => by rw [← cancel_epi f, category.id_comp, s.condition]) fun s m m₁ m₂ => by
     simpa using m₁
 #align category_theory.limits.pushout_cocone.is_colimit_mk_id_id CategoryTheory.Limits.PushoutCocone.isColimitMkIdId
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.epi_of_isColimitMkIdId /-
 /-- `f` is an epi if the pushout cocone `(𝟙 X, 𝟙 X)` is a colimit for the pair `(f, f)`.
 The converse is given in `pushout_cocone.is_colimit_mk_id_id`.
 -/
-theorem epi_of_isColimit_mk_id_id (f : X ⟶ Y)
+theorem epi_of_isColimitMkIdId (f : X ⟶ Y)
     (t : IsColimit (mk (𝟙 Y) (𝟙 Y) rfl : PushoutCocone f f)) : Epi f :=
   ⟨fun Z g h eq =>
     by
     rcases pushout_cocone.is_colimit.desc' t _ _ Eq with ⟨_, rfl, rfl⟩
     rfl⟩
-#align category_theory.limits.pushout_cocone.epi_of_is_colimit_mk_id_id CategoryTheory.Limits.PushoutCocone.epi_of_isColimit_mk_id_id
+#align category_theory.limits.pushout_cocone.epi_of_is_colimit_mk_id_id CategoryTheory.Limits.PushoutCocone.epi_of_isColimitMkIdId
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.isColimitOfFactors /-
 /-- Suppose `f` and `g` are two morphisms with a common domain and `s` is a colimit cocone over the
     diagram formed by `f` and `g`. Suppose `f` and `g` both factor through an epimorphism `h` via
     `x` and `y`, respectively. Then `s` is also a colimit cocone over the diagram formed by `x` and
@@ -1031,7 +1564,9 @@ def isColimitOfFactors (f : X ⟶ Y) (g : X ⟶ Z) (h : X ⟶ W) [Epi h] (x : W
           symm
         exacts[hs.fac _ walking_span.left, hs.fac _ walking_span.right]⟩⟩
 #align category_theory.limits.pushout_cocone.is_colimit_of_factors CategoryTheory.Limits.PushoutCocone.isColimitOfFactors
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.isColimitOfEpiComp /-
 /-- If `W` is the pushout of `f, g`,
 it is also the pushout of `h ≫ f, h ≫ g` for any epi `h`. -/
 def isColimitOfEpiComp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h] (s : PushoutCocone f g)
@@ -1050,9 +1585,16 @@ def isColimitOfEpiComp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h] (s : Pu
   intro m hm₁ hm₂
   exact (pushout_cocone.is_colimit.hom_ext H (hm₁.trans h₁.symm) (hm₂.trans h₂.symm) : _)
 #align category_theory.limits.pushout_cocone.is_colimit_of_epi_comp CategoryTheory.Limits.PushoutCocone.isColimitOfEpiComp
+-/
 
 end PushoutCocone
 
+/- warning: category_theory.limits.cone.of_pullback_cone -> CategoryTheory.Limits.Cone.ofPullbackCone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) -> (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) -> (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackConeₓ'. -/
 /-- This is a helper construction that can be useful when verifying that a category has all
     pullbacks. Given `F : walking_cospan ⥤ C`, which is really the same as
     `cospan (F.map inl) (F.map inr)`, and a pullback cone on `F.map inl` and `F.map inr`, we
@@ -1067,6 +1609,12 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
   π := t.π ≫ (diagramIsoCospan F).inv
 #align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackCone
 
+/- warning: category_theory.limits.cocone.of_pushout_cocone -> CategoryTheory.Limits.Cocone.ofPushoutCocone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) -> (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) -> (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCoconeₓ'. -/
 /-- This is a helper construction that can be useful when verifying that a category has all
     pushout. Given `F : walking_span ⥤ C`, which is really the same as
     `span (F.map fst) (F.mal snd)`, and a pushout cocone on `F.map fst` and `F.map snd`,
@@ -1081,6 +1629,12 @@ def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst
   ι := (diagramIsoSpan F).Hom ≫ t.ι
 #align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCocone
 
+/- warning: category_theory.limits.pullback_cone.of_cone -> CategoryTheory.Limits.PullbackCone.ofCone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PullbackCone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofConeₓ'. -/
 /-- Given `F : walking_cospan ⥤ C`, which is really the same as `cospan (F.map inl) (F.map inr)`,
     and a cone on `F`, we get a pullback cone on `F.map inl` and `F.map inr`. -/
 @[simps]
@@ -1090,6 +1644,12 @@ def PullbackCone.ofCone {F : WalkingCospan ⥤ C} (t : Cone F) : PullbackCone (F
   π := t.π ≫ (diagramIsoCospan F).Hom
 #align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofCone
 
+/- warning: category_theory.limits.pullback_cone.iso_mk -> CategoryTheory.Limits.PullbackCone.isoMk is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Functor.obj.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cones.postcompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Limits.diagramIsoCospan.{u1, u2} C _inst_1 F))) t) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Limits.PullbackCone.isoMk._proof_1.{u2, u1} C _inst_1 F t))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F))) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr))) (CategoryTheory.Limits.Cones.postcompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Iso.hom.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (CategoryTheory.Limits.diagramIsoCospan.{u1, u2} C _inst_1 F)))) t) (CategoryTheory.Limits.PullbackCone.mk.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.one)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.one) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.left CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inl)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) F (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingCospan.right CategoryTheory.Limits.WalkingCospan.one CategoryTheory.Limits.WalkingCospan.Hom.inr)))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMkₓ'. -/
 /-- A diagram `walking_cospan ⥤ C` is isomorphic to some `pullback_cone.mk` after
 composing with `diagram_iso_cospan`. -/
 @[simps]
@@ -1103,6 +1663,12 @@ def PullbackCone.isoMk {F : WalkingCospan ⥤ C} (t : Cone F) :
         simp
 #align category_theory.limits.pullback_cone.iso_mk CategoryTheory.Limits.PullbackCone.isoMk
 
+/- warning: category_theory.limits.pushout_cocone.of_cocone -> CategoryTheory.Limits.PushoutCocone.ofCocone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1}, (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) -> (CategoryTheory.Limits.PushoutCocone.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCoconeₓ'. -/
 /-- Given `F : walking_span ⥤ C`, which is really the same as `span (F.map fst) (F.map snd)`,
     and a cocone on `F`, we get a pushout cocone on `F.map fst` and `F.map snd`. -/
 @[simps]
@@ -1113,6 +1679,12 @@ def PushoutCocone.ofCocone {F : WalkingSpan ⥤ C} (t : Cocone F) :
   ι := (diagramIsoSpan F).inv ≫ t.ι
 #align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCocone
 
+/- warning: category_theory.limits.pushout_cocone.iso_mk -> CategoryTheory.Limits.PushoutCocone.isoMk is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Functor.obj.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocones.precompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Limits.diagramIsoSpan.{u1, u2} C _inst_1 F))) t) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.Functor.map.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Limits.PushoutCocone.isoMk._proof_1.{u2, u1} C _inst_1 F t))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {F : CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1} (t : CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F), CategoryTheory.Iso.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F))) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) (CategoryTheory.Limits.Cocone.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocone.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))) (CategoryTheory.Limits.Cocones.precompose.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Iso.inv.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) F (CategoryTheory.Limits.span.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.Limits.diagramIsoSpan.{u1, u2} C _inst_1 F)))) t) (CategoryTheory.Limits.PushoutCocone.mk.{u1, u2} C _inst_1 (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.left CategoryTheory.Limits.WalkingSpan.Hom.fst) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero) (Prefunctor.map.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t))) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd)) (CategoryTheory.NatTrans.naturality.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t)) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 F t) CategoryTheory.Limits.WalkingSpan.zero CategoryTheory.Limits.WalkingSpan.right CategoryTheory.Limits.WalkingSpan.Hom.snd))))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMkₓ'. -/
 /-- A diagram `walking_span ⥤ C` is isomorphic to some `pushout_cocone.mk` after composing with
 `diagram_iso_span`. -/
 @[simps]
@@ -1126,138 +1698,183 @@ def PushoutCocone.isoMk {F : WalkingSpan ⥤ C} (t : Cocone F) :
         simp
 #align category_theory.limits.pushout_cocone.iso_mk CategoryTheory.Limits.PushoutCocone.isoMk
 
+#print CategoryTheory.Limits.HasPullback /-
 /-- `has_pullback f g` represents a particular choice of limiting cone
 for the pair of morphisms `f : X ⟶ Z` and `g : Y ⟶ Z`.
 -/
 abbrev HasPullback {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) :=
   HasLimit (cospan f g)
 #align category_theory.limits.has_pullback CategoryTheory.Limits.HasPullback
+-/
 
+#print CategoryTheory.Limits.HasPushout /-
 /-- `has_pushout f g` represents a particular choice of colimiting cocone
 for the pair of morphisms `f : X ⟶ Y` and `g : X ⟶ Z`.
 -/
 abbrev HasPushout {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) :=
   HasColimit (span f g)
 #align category_theory.limits.has_pushout CategoryTheory.Limits.HasPushout
+-/
 
+#print CategoryTheory.Limits.pullback /-
 /-- `pullback f g` computes the pullback of a pair of morphisms with the same target. -/
 abbrev pullback {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] :=
   limit (cospan f g)
 #align category_theory.limits.pullback CategoryTheory.Limits.pullback
+-/
 
+#print CategoryTheory.Limits.pushout /-
 /-- `pushout f g` computes the pushout of a pair of morphisms with the same source. -/
 abbrev pushout {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] :=
   colimit (span f g)
 #align category_theory.limits.pushout CategoryTheory.Limits.pushout
+-/
 
+#print CategoryTheory.Limits.pullback.fst /-
 /-- The first projection of the pullback of `f` and `g`. -/
 abbrev pullback.fst {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] : pullback f g ⟶ X :=
   limit.π (cospan f g) WalkingCospan.left
 #align category_theory.limits.pullback.fst CategoryTheory.Limits.pullback.fst
+-/
 
+#print CategoryTheory.Limits.pullback.snd /-
 /-- The second projection of the pullback of `f` and `g`. -/
 abbrev pullback.snd {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] : pullback f g ⟶ Y :=
   limit.π (cospan f g) WalkingCospan.right
 #align category_theory.limits.pullback.snd CategoryTheory.Limits.pullback.snd
+-/
 
+#print CategoryTheory.Limits.pushout.inl /-
 /-- The first inclusion into the pushout of `f` and `g`. -/
 abbrev pushout.inl {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] : Y ⟶ pushout f g :=
   colimit.ι (span f g) WalkingSpan.left
 #align category_theory.limits.pushout.inl CategoryTheory.Limits.pushout.inl
+-/
 
+#print CategoryTheory.Limits.pushout.inr /-
 /-- The second inclusion into the pushout of `f` and `g`. -/
 abbrev pushout.inr {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] : Z ⟶ pushout f g :=
   colimit.ι (span f g) WalkingSpan.right
 #align category_theory.limits.pushout.inr CategoryTheory.Limits.pushout.inr
+-/
 
+#print CategoryTheory.Limits.pullback.lift /-
 /-- A pair of morphisms `h : W ⟶ X` and `k : W ⟶ Y` satisfying `h ≫ f = k ≫ g` induces a morphism
     `pullback.lift : W ⟶ pullback f g`. -/
 abbrev pullback.lift {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X) (k : W ⟶ Y)
     (w : h ≫ f = k ≫ g) : W ⟶ pullback f g :=
   limit.lift _ (PullbackCone.mk h k w)
 #align category_theory.limits.pullback.lift CategoryTheory.Limits.pullback.lift
+-/
 
+#print CategoryTheory.Limits.pushout.desc /-
 /-- A pair of morphisms `h : Y ⟶ W` and `k : Z ⟶ W` satisfying `f ≫ h = g ≫ k` induces a morphism
     `pushout.desc : pushout f g ⟶ W`. -/
 abbrev pushout.desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W) (k : Z ⟶ W)
     (w : f ≫ h = g ≫ k) : pushout f g ⟶ W :=
   colimit.desc _ (PushoutCocone.mk h k w)
 #align category_theory.limits.pushout.desc CategoryTheory.Limits.pushout.desc
+-/
 
+#print CategoryTheory.Limits.PullbackCone.fst_colimit_cocone /-
 @[simp]
 theorem PullbackCone.fst_colimit_cocone {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
     [HasLimit (cospan f g)] : PullbackCone.fst (limit.cone (cospan f g)) = pullback.fst :=
   rfl
 #align category_theory.limits.pullback_cone.fst_colimit_cocone CategoryTheory.Limits.PullbackCone.fst_colimit_cocone
+-/
 
+#print CategoryTheory.Limits.PullbackCone.snd_colimit_cocone /-
 @[simp]
 theorem PullbackCone.snd_colimit_cocone {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
     [HasLimit (cospan f g)] : PullbackCone.snd (limit.cone (cospan f g)) = pullback.snd :=
   rfl
 #align category_theory.limits.pullback_cone.snd_colimit_cocone CategoryTheory.Limits.PullbackCone.snd_colimit_cocone
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone /-
 @[simp]
 theorem PushoutCocone.inl_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
     [HasColimit (span f g)] : PushoutCocone.inl (colimit.cocone (span f g)) = pushout.inl :=
   rfl
 #align category_theory.limits.pushout_cocone.inl_colimit_cocone CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone
+-/
 
+#print CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone /-
 @[simp]
 theorem PushoutCocone.inr_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
     [HasColimit (span f g)] : PushoutCocone.inr (colimit.cocone (span f g)) = pushout.inr :=
   rfl
 #align category_theory.limits.pushout_cocone.inr_colimit_cocone CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone
+-/
 
+#print CategoryTheory.Limits.pullback.lift_fst /-
 @[simp, reassoc.1]
 theorem pullback.lift_fst {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.fst = h :=
   limit.lift_π _ _
 #align category_theory.limits.pullback.lift_fst CategoryTheory.Limits.pullback.lift_fst
+-/
 
+#print CategoryTheory.Limits.pullback.lift_snd /-
 @[simp, reassoc.1]
 theorem pullback.lift_snd {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.snd = k :=
   limit.lift_π _ _
 #align category_theory.limits.pullback.lift_snd CategoryTheory.Limits.pullback.lift_snd
+-/
 
+#print CategoryTheory.Limits.pushout.inl_desc /-
 @[simp, reassoc.1]
 theorem pushout.inl_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inl ≫ pushout.desc h k w = h :=
   colimit.ι_desc _ _
 #align category_theory.limits.pushout.inl_desc CategoryTheory.Limits.pushout.inl_desc
+-/
 
+#print CategoryTheory.Limits.pushout.inr_desc /-
 @[simp, reassoc.1]
 theorem pushout.inr_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inr ≫ pushout.desc h k w = k :=
   colimit.ι_desc _ _
 #align category_theory.limits.pushout.inr_desc CategoryTheory.Limits.pushout.inr_desc
+-/
 
+#print CategoryTheory.Limits.pullback.lift' /-
 /-- A pair of morphisms `h : W ⟶ X` and `k : W ⟶ Y` satisfying `h ≫ f = k ≫ g` induces a morphism
     `l : W ⟶ pullback f g` such that `l ≫ pullback.fst = h` and `l ≫ pullback.snd = k`. -/
 def pullback.lift' {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X) (k : W ⟶ Y)
     (w : h ≫ f = k ≫ g) : { l : W ⟶ pullback f g // l ≫ pullback.fst = h ∧ l ≫ pullback.snd = k } :=
   ⟨pullback.lift h k w, pullback.lift_fst _ _ _, pullback.lift_snd _ _ _⟩
 #align category_theory.limits.pullback.lift' CategoryTheory.Limits.pullback.lift'
+-/
 
+#print CategoryTheory.Limits.pullback.desc' /-
 /-- A pair of morphisms `h : Y ⟶ W` and `k : Z ⟶ W` satisfying `f ≫ h = g ≫ k` induces a morphism
     `l : pushout f g ⟶ W` such that `pushout.inl ≫ l = h` and `pushout.inr ≫ l = k`. -/
 def pullback.desc' {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W) (k : Z ⟶ W)
     (w : f ≫ h = g ≫ k) : { l : pushout f g ⟶ W // pushout.inl ≫ l = h ∧ pushout.inr ≫ l = k } :=
   ⟨pushout.desc h k w, pushout.inl_desc _ _ _, pushout.inr_desc _ _ _⟩
 #align category_theory.limits.pullback.desc' CategoryTheory.Limits.pullback.desc'
+-/
 
+#print CategoryTheory.Limits.pullback.condition /-
 @[reassoc.1]
 theorem pullback.condition {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] :
     (pullback.fst : pullback f g ⟶ X) ≫ f = pullback.snd ≫ g :=
   PullbackCone.condition _
 #align category_theory.limits.pullback.condition CategoryTheory.Limits.pullback.condition
+-/
 
+#print CategoryTheory.Limits.pushout.condition /-
 @[reassoc.1]
 theorem pushout.condition {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] :
     f ≫ (pushout.inl : Y ⟶ pushout f g) = g ≫ pushout.inr :=
   PushoutCocone.condition _
 #align category_theory.limits.pushout.condition CategoryTheory.Limits.pushout.condition
+-/
 
+#print CategoryTheory.Limits.pullback.map /-
 /-- Given such a diagram, then there is a natural morphism `W ×ₛ X ⟶ Y ×ₜ Z`.
 
     W  ⟶  Y
@@ -1273,13 +1890,17 @@ abbrev pullback.map {W X Y Z S T : C} (f₁ : W ⟶ S) (f₂ : X ⟶ S) [HasPull
   pullback.lift (pullback.fst ≫ i₁) (pullback.snd ≫ i₂)
     (by simp [← eq₁, ← eq₂, pullback.condition_assoc])
 #align category_theory.limits.pullback.map CategoryTheory.Limits.pullback.map
+-/
 
+#print CategoryTheory.Limits.pullback.mapDesc /-
 /-- The canonical map `X ×ₛ Y ⟶ X ×ₜ Y` given `S ⟶ T`. -/
 abbrev pullback.mapDesc {X Y S T : C} (f : X ⟶ S) (g : Y ⟶ S) (i : S ⟶ T) [HasPullback f g]
     [HasPullback (f ≫ i) (g ≫ i)] : pullback f g ⟶ pullback (f ≫ i) (g ≫ i) :=
   pullback.map f g (f ≫ i) (g ≫ i) (𝟙 _) (𝟙 _) i (Category.id_comp _).symm (Category.id_comp _).symm
 #align category_theory.limits.pullback.map_desc CategoryTheory.Limits.pullback.mapDesc
+-/
 
+#print CategoryTheory.Limits.pushout.map /-
 /-- Given such a diagram, then there is a natural morphism `W ⨿ₛ X ⟶ Y ⨿ₜ Z`.
 
         W  ⟶  Y
@@ -1297,13 +1918,17 @@ abbrev pushout.map {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [HasPusho
       simp only [← category.assoc, eq₁, eq₂]
       simp [pushout.condition])
 #align category_theory.limits.pushout.map CategoryTheory.Limits.pushout.map
+-/
 
+#print CategoryTheory.Limits.pushout.mapLift /-
 /-- The canonical map `X ⨿ₛ Y ⟶ X ⨿ₜ Y` given `S ⟶ T`. -/
 abbrev pushout.mapLift {X Y S T : C} (f : T ⟶ X) (g : T ⟶ Y) (i : S ⟶ T) [HasPushout f g]
     [HasPushout (i ≫ f) (i ≫ g)] : pushout (i ≫ f) (i ≫ g) ⟶ pushout f g :=
   pushout.map (i ≫ f) (i ≫ g) f g (𝟙 _) (𝟙 _) i (Category.comp_id _) (Category.comp_id _)
 #align category_theory.limits.pushout.map_lift CategoryTheory.Limits.pushout.mapLift
+-/
 
+#print CategoryTheory.Limits.pullback.hom_ext /-
 /-- Two morphisms into a pullback are equal if their compositions with the pullback morphisms are
     equal -/
 @[ext]
@@ -1312,26 +1937,34 @@ theorem pullback.hom_ext {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f
     (h₁ : k ≫ pullback.snd = l ≫ pullback.snd) : k = l :=
   limit.hom_ext <| PullbackCone.equalizer_ext _ h₀ h₁
 #align category_theory.limits.pullback.hom_ext CategoryTheory.Limits.pullback.hom_ext
+-/
 
+#print CategoryTheory.Limits.pullbackIsPullback /-
 /-- The pullback cone built from the pullback projections is a pullback. -/
 def pullbackIsPullback {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] :
     IsLimit (PullbackCone.mk (pullback.fst : pullback f g ⟶ _) pullback.snd pullback.condition) :=
   PullbackCone.IsLimit.mk _ (fun s => pullback.lift s.fst s.snd s.condition) (by simp) (by simp)
     (by tidy)
 #align category_theory.limits.pullback_is_pullback CategoryTheory.Limits.pullbackIsPullback
+-/
 
+#print CategoryTheory.Limits.pullback.fst_of_mono /-
 /-- The pullback of a monomorphism is a monomorphism -/
 instance pullback.fst_of_mono {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] [Mono g] :
     Mono (pullback.fst : pullback f g ⟶ X) :=
   PullbackCone.mono_fst_of_is_pullback_of_mono (limit.isLimit _)
 #align category_theory.limits.pullback.fst_of_mono CategoryTheory.Limits.pullback.fst_of_mono
+-/
 
+#print CategoryTheory.Limits.pullback.snd_of_mono /-
 /-- The pullback of a monomorphism is a monomorphism -/
 instance pullback.snd_of_mono {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] [Mono f] :
     Mono (pullback.snd : pullback f g ⟶ Y) :=
   PullbackCone.mono_snd_of_is_pullback_of_mono (limit.isLimit _)
 #align category_theory.limits.pullback.snd_of_mono CategoryTheory.Limits.pullback.snd_of_mono
+-/
 
+#print CategoryTheory.Limits.mono_pullback_to_prod /-
 /-- The map `X ×[Z] Y ⟶ X × Y` is mono. -/
 instance mono_pullback_to_prod {C : Type _} [Category C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
     [HasPullback f g] [HasBinaryProduct X Y] :
@@ -1341,7 +1974,9 @@ instance mono_pullback_to_prod {C : Type _} [Category C] {X Y Z : C} (f : X ⟶
     · simpa using congr_arg (fun f => f ≫ Prod.fst) h
     · simpa using congr_arg (fun f => f ≫ Prod.snd) h⟩
 #align category_theory.limits.mono_pullback_to_prod CategoryTheory.Limits.mono_pullback_to_prod
+-/
 
+#print CategoryTheory.Limits.pushout.hom_ext /-
 /-- Two morphisms out of a pushout are equal if their compositions with the pushout morphisms are
     equal -/
 @[ext]
@@ -1350,26 +1985,34 @@ theorem pushout.hom_ext {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g]
     (h₁ : pushout.inr ≫ k = pushout.inr ≫ l) : k = l :=
   colimit.hom_ext <| PushoutCocone.coequalizer_ext _ h₀ h₁
 #align category_theory.limits.pushout.hom_ext CategoryTheory.Limits.pushout.hom_ext
+-/
 
+#print CategoryTheory.Limits.pushoutIsPushout /-
 /-- The pushout cocone built from the pushout coprojections is a pushout. -/
 def pushoutIsPushout {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] :
     IsColimit (PushoutCocone.mk (pushout.inl : _ ⟶ pushout f g) pushout.inr pushout.condition) :=
   PushoutCocone.IsColimit.mk _ (fun s => pushout.desc s.inl s.inr s.condition) (by simp) (by simp)
     (by tidy)
 #align category_theory.limits.pushout_is_pushout CategoryTheory.Limits.pushoutIsPushout
+-/
 
+#print CategoryTheory.Limits.pushout.inl_of_epi /-
 /-- The pushout of an epimorphism is an epimorphism -/
 instance pushout.inl_of_epi {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] [Epi g] :
     Epi (pushout.inl : Y ⟶ pushout f g) :=
   PushoutCocone.epi_inl_of_is_pushout_of_epi (colimit.isColimit _)
 #align category_theory.limits.pushout.inl_of_epi CategoryTheory.Limits.pushout.inl_of_epi
+-/
 
+#print CategoryTheory.Limits.pushout.inr_of_epi /-
 /-- The pushout of an epimorphism is an epimorphism -/
 instance pushout.inr_of_epi {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] [Epi f] :
     Epi (pushout.inr : Z ⟶ pushout f g) :=
   PushoutCocone.epi_inr_of_is_pushout_of_epi (colimit.isColimit _)
 #align category_theory.limits.pushout.inr_of_epi CategoryTheory.Limits.pushout.inr_of_epi
+-/
 
+#print CategoryTheory.Limits.epi_coprod_to_pushout /-
 /-- The map ` X ⨿ Y ⟶ X ⨿[Z] Y` is epi. -/
 instance epi_coprod_to_pushout {C : Type _} [Category C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
     [HasPushout f g] [HasBinaryCoproduct Y Z] :
@@ -1379,7 +2022,9 @@ instance epi_coprod_to_pushout {C : Type _} [Category C] {X Y Z : C} (f : X ⟶
     · simpa using congr_arg (fun f => coprod.inl ≫ f) h
     · simpa using congr_arg (fun f => coprod.inr ≫ f) h⟩
 #align category_theory.limits.epi_coprod_to_pushout CategoryTheory.Limits.epi_coprod_to_pushout
+-/
 
+#print CategoryTheory.Limits.pullback.map_isIso /-
 instance pullback.map_isIso {W X Y Z S T : C} (f₁ : W ⟶ S) (f₂ : X ⟶ S) [HasPullback f₁ f₂]
     (g₁ : Y ⟶ T) (g₂ : Z ⟶ T) [HasPullback g₁ g₂] (i₁ : W ⟶ Y) (i₂ : X ⟶ Z) (i₃ : S ⟶ T)
     (eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁) (eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂) [IsIso i₁] [IsIso i₂] [IsIso i₃] :
@@ -1390,7 +2035,9 @@ instance pullback.map_isIso {W X Y Z S T : C} (f₁ : W ⟶ S) (f₂ : X ⟶ S)
   · rw [is_iso.comp_inv_eq, category.assoc, eq₂, is_iso.inv_hom_id_assoc]
   tidy
 #align category_theory.limits.pullback.map_is_iso CategoryTheory.Limits.pullback.map_isIso
+-/
 
+#print CategoryTheory.Limits.pullback.congrHom /-
 /-- If `f₁ = f₂` and `g₁ = g₂`, we may construct a canonical
 isomorphism `pullback f₁ g₁ ≅ pullback f₂ g₂` -/
 @[simps Hom]
@@ -1398,7 +2045,9 @@ def pullback.congrHom {X Y Z : C} {f₁ f₂ : X ⟶ Z} {g₁ g₂ : Y ⟶ Z} (h
     [HasPullback f₁ g₁] [HasPullback f₂ g₂] : pullback f₁ g₁ ≅ pullback f₂ g₂ :=
   asIso <| pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simp [h₁]) (by simp [h₂])
 #align category_theory.limits.pullback.congr_hom CategoryTheory.Limits.pullback.congrHom
+-/
 
+#print CategoryTheory.Limits.pullback.congrHom_inv /-
 @[simp]
 theorem pullback.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Z} {g₁ g₂ : Y ⟶ Z} (h₁ : f₁ = f₂)
     (h₂ : g₁ = g₂) [HasPullback f₁ g₁] [HasPullback f₂ g₂] :
@@ -1415,7 +2064,9 @@ theorem pullback.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Z} {g₁ g₂ : Y 
     erw [pullback.lift_snd_assoc]
     rw [category.comp_id, category.comp_id]
 #align category_theory.limits.pullback.congr_hom_inv CategoryTheory.Limits.pullback.congrHom_inv
+-/
 
+#print CategoryTheory.Limits.pushout.map_isIso /-
 instance pushout.map_isIso {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [HasPushout f₁ f₂]
     (g₁ : T ⟶ Y) (g₂ : T ⟶ Z) [HasPushout g₁ g₂] (i₁ : W ⟶ Y) (i₂ : X ⟶ Z) (i₃ : S ⟶ T)
     (eq₁ : f₁ ≫ i₁ = i₃ ≫ g₁) (eq₂ : f₂ ≫ i₂ = i₃ ≫ g₂) [IsIso i₁] [IsIso i₂] [IsIso i₃] :
@@ -1426,7 +2077,9 @@ instance pushout.map_isIso {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [
   · rw [is_iso.comp_inv_eq, category.assoc, eq₂, is_iso.inv_hom_id_assoc]
   tidy
 #align category_theory.limits.pushout.map_is_iso CategoryTheory.Limits.pushout.map_isIso
+-/
 
+#print CategoryTheory.Limits.pullback.mapDesc_comp /-
 theorem pullback.mapDesc_comp {X Y S T S' : C} (f : X ⟶ T) (g : Y ⟶ T) (i : T ⟶ S) (i' : S ⟶ S')
     [HasPullback f g] [HasPullback (f ≫ i) (g ≫ i)] [HasPullback (f ≫ i ≫ i') (g ≫ i ≫ i')]
     [HasPullback ((f ≫ i) ≫ i') ((g ≫ i) ≫ i')] :
@@ -1436,7 +2089,9 @@ theorem pullback.mapDesc_comp {X Y S T S' : C} (f : X ⟶ T) (g : Y ⟶ T) (i :
           (pullback.congrHom (Category.assoc _ _ _) (Category.assoc _ _ _)).Hom :=
   by ext <;> simp
 #align category_theory.limits.pullback.map_desc_comp CategoryTheory.Limits.pullback.mapDesc_comp
+-/
 
+#print CategoryTheory.Limits.pushout.congrHom /-
 /-- If `f₁ = f₂` and `g₁ = g₂`, we may construct a canonical
 isomorphism `pushout f₁ g₁ ≅ pullback f₂ g₂` -/
 @[simps Hom]
@@ -1444,7 +2099,9 @@ def pushout.congrHom {X Y Z : C} {f₁ f₂ : X ⟶ Y} {g₁ g₂ : X ⟶ Z} (h
     [HasPushout f₁ g₁] [HasPushout f₂ g₂] : pushout f₁ g₁ ≅ pushout f₂ g₂ :=
   asIso <| pushout.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simp [h₁]) (by simp [h₂])
 #align category_theory.limits.pushout.congr_hom CategoryTheory.Limits.pushout.congrHom
+-/
 
+#print CategoryTheory.Limits.pushout.congrHom_inv /-
 @[simp]
 theorem pushout.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Y} {g₁ g₂ : X ⟶ Z} (h₁ : f₁ = f₂)
     (h₂ : g₁ = g₂) [HasPushout f₁ g₁] [HasPushout f₂ g₂] :
@@ -1461,7 +2118,9 @@ theorem pushout.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Y} {g₁ g₂ : X 
     erw [pushout.inr_desc]
     rw [category.id_comp]
 #align category_theory.limits.pushout.congr_hom_inv CategoryTheory.Limits.pushout.congrHom_inv
+-/
 
+#print CategoryTheory.Limits.pushout.mapLift_comp /-
 theorem pushout.mapLift_comp {X Y S T S' : C} (f : T ⟶ X) (g : T ⟶ Y) (i : S ⟶ T) (i' : S' ⟶ S)
     [HasPushout f g] [HasPushout (i ≫ f) (i ≫ g)] [HasPushout (i' ≫ i ≫ f) (i' ≫ i ≫ g)]
     [HasPushout ((i' ≫ i) ≫ f) ((i' ≫ i) ≫ g)] :
@@ -1470,11 +2129,18 @@ theorem pushout.mapLift_comp {X Y S T S' : C} (f : T ⟶ X) (g : T ⟶ Y) (i : S
         pushout.mapLift _ _ i' ≫ pushout.mapLift f g i :=
   by ext <;> simp
 #align category_theory.limits.pushout.map_lift_comp CategoryTheory.Limits.pushout.mapLift_comp
+-/
 
 section
 
 variable (G : C ⥤ D)
 
+/- warning: category_theory.limits.pullback_comparison -> CategoryTheory.Limits.pullbackComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparisonₓ'. -/
 /-- The comparison morphism for the pullback of `f,g`.
 This is an isomorphism iff `G` preserves the pullback of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1485,6 +2151,12 @@ def pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] [HasPullbac
     (by simp only [← G.map_comp, pullback.condition])
 #align category_theory.limits.pullback_comparison CategoryTheory.Limits.pullbackComparison
 
+/- warning: category_theory.limits.pullback_comparison_comp_fst -> CategoryTheory.Limits.pullbackComparison_comp_fst is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.fst.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) X (CategoryTheory.Limits.pullback.fst.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.fst.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) X (CategoryTheory.Limits.pullback.fst.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fstₓ'. -/
 @[simp, reassoc.1]
 theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
@@ -1492,6 +2164,12 @@ theorem pullbackComparison_comp_fst (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_comparison_comp_fst CategoryTheory.Limits.pullbackComparison_comp_fst
 
+/- warning: category_theory.limits.pullback_comparison_comp_snd -> CategoryTheory.Limits.pullbackComparison_comp_snd is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.snd.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) Y (CategoryTheory.Limits.pullback.snd.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Limits.pullback.snd.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) Y (CategoryTheory.Limits.pullback.snd.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_sndₓ'. -/
 @[simp, reassoc.1]
 theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] :
@@ -1499,6 +2177,12 @@ theorem pullbackComparison_comp_snd (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   pullback.lift_snd _ _ _
 #align category_theory.limits.pullback_comparison_comp_snd CategoryTheory.Limits.pullbackComparison_comp_snd
 
+/- warning: category_theory.limits.map_lift_pullback_comparison -> CategoryTheory.Limits.map_lift_pullbackComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W X} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Y} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pullback.lift.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w)) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Limits.pullback.lift.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g) _inst_4 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (Eq.mpr.{0} (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) (id_tag Tactic.IdTag.simp (Eq.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)))) ((fun (a : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (a_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (e_1 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a a_1) (ᾰ : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (ᾰ_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (e_2 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) ᾰ ᾰ_1) => congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) a_1) ᾰ ᾰ_1 (congr_arg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) -> Prop) a a_1 (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z))) e_1) e_2) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z f)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W X Z h f)) ((fun (self : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} (ᾰ : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (ᾰ_1 : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (e_4 : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) ᾰ ᾰ_1) => congr_arg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self Y)) ᾰ ᾰ_1 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X Y) e_4) G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g) w)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y k) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y Z g)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Y Z k g)))) (rfl.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)))))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.Limits.HasPullback.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W X} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Y} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pullback.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W (CategoryTheory.Limits.pullback.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pullback.lift.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w)) (CategoryTheory.Limits.pullbackComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Limits.pullback.lift.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Y k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y Z g)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W X h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W X Z h f) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) W Z) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W X Z h f) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) W Y Z k g)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W Z (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) W Y Z k g))))))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparisonₓ'. -/
 @[simp, reassoc.1]
 theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
     [HasPullback (G.map f) (G.map g)] {W : C} {h : W ⟶ X} {k : W ⟶ Y} (w : h ≫ f = k ≫ g) :
@@ -1507,6 +2191,12 @@ theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
   by ext <;> simp [← G.map_comp]
 #align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparison
 
+/- warning: category_theory.limits.pushout_comparison -> CategoryTheory.Limits.pushoutComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparisonₓ'. -/
 /-- The comparison morphism for the pushout of `f,g`.
 This is an isomorphism iff `G` preserves the pushout of `f,g`; see
 `category_theory/limits/preserves/shapes/pullbacks.lean`
@@ -1517,18 +2207,36 @@ def pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] [HasPushout (
     (by simp only [← G.map_comp, pushout.condition])
 #align category_theory.limits.pushout_comparison CategoryTheory.Limits.pushoutComparison
 
+/- warning: category_theory.limits.inl_comp_pushout_comparison -> CategoryTheory.Limits.inl_comp_pushoutComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inl.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inl.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inl.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inl.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc.1]
 theorem inl_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inl ≫ pushoutComparison G f g = G.map pushout.inl :=
   pushout.inl_desc _ _ _
 #align category_theory.limits.inl_comp_pushout_comparison CategoryTheory.Limits.inl_comp_pushoutComparison
 
+/- warning: category_theory.limits.inr_comp_pushout_comparison -> CategoryTheory.Limits.inr_comp_pushoutComparison is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inr.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inr.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)], Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Limits.pushout.inr.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) (CategoryTheory.Limits.pushout.inr.{u2, u3} C _inst_1 X Y Z f g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparisonₓ'. -/
 @[simp, reassoc.1]
 theorem inr_comp_pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] : pushout.inr ≫ pushoutComparison G f g = G.map pushout.inr :=
   pushout.inr_desc _ _ _
 #align category_theory.limits.inr_comp_pushout_comparison CategoryTheory.Limits.inr_comp_pushoutComparison
 
+/- warning: category_theory.limits.pushout_comparison_map_desc -> CategoryTheory.Limits.pushoutComparison_map_desc is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y W} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Z W} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) W (CategoryTheory.Limits.pushout.desc.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w))) (CategoryTheory.Limits.pushout.desc.{u1, u4} D _inst_2 (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) _inst_4 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k) (Eq.mpr.{0} (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) (id_tag Tactic.IdTag.simp (Eq.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)))) ((fun (a : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (a_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (e_1 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a a_1) (ᾰ : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (ᾰ_1 : Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (e_2 : Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) ᾰ ᾰ_1) => congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) a_1) ᾰ ᾰ_1 (congr_arg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) -> Prop) a a_1 (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W))) e_1) e_2) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y f) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Y W h)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Y W f h)) ((fun (self : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) {X : C} {Y : C} (ᾰ : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (ᾰ_1 : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (e_4 : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) ᾰ ᾰ_1) => congr_arg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 self Y)) ᾰ ᾰ_1 (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 self X Y) e_4) G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k) w)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z g) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G Z W k)) (CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X Z W g k)))) (rfl.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X) (CategoryTheory.Functor.obj.{u2, u1, u3, u4} C _inst_1 D _inst_2 G W)) (CategoryTheory.Functor.map.{u2, u1, u3, u4} C _inst_1 D _inst_2 G X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)))))
+but is expected to have type
+  forall {C : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} C] {D : Type.{u4}} [_inst_2 : CategoryTheory.Category.{u1, u4} D] {X : C} {Y : C} {Z : C} (G : CategoryTheory.Functor.{u2, u1, u3, u4} C _inst_1 D _inst_2) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Y) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X Z) [_inst_3 : CategoryTheory.Limits.HasPushout.{u2, u3} C _inst_1 X Y Z f g] [_inst_4 : CategoryTheory.Limits.HasPushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g)] {W : C} {h : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Y W} {k : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) Z W} (w : Eq.{succ u2} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)), Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (CategoryTheory.Limits.pushout.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (CategoryTheory.Limits.pushoutComparison.{u1, u2, u3, u4} C _inst_1 D _inst_2 X Y Z G f g _inst_3 _inst_4) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) (CategoryTheory.Limits.pushout.{u2, u3} C _inst_1 X Y Z f g _inst_3) W (CategoryTheory.Limits.pushout.desc.{u2, u3} C _inst_1 W X Y Z f g _inst_3 h k w))) (CategoryTheory.Limits.pushout.desc.{u1, u4} D _inst_2 (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) _inst_4 (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k) (of_eq_true (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.trans.{1} Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) True (congr.{succ u1, 1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) Prop (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h))) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Z g) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Z W k)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (congrArg.{succ u1, succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) ((Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) -> Prop) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) (Eq.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W))) (Eq.trans.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X Y f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) Y W h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Y W f h) (congrArg.{succ u2, succ u1} (Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) X W) (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Y W f h) (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W) w))) ((fun (x_0 : C) (x_1 : C) (x_2 : C) (f : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_0 x_1) (g : Quiver.Hom.{succ u2, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) x_1 x_2) => Eq.symm.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_2 (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) x_0 x_1 x_2 f g)) (CategoryTheory.CategoryStruct.comp.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_2) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_0 x_1 f) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) x_1 x_2 g)) ((fun (x_0 : C) (x_1 : C) (x_2 : C) => CategoryTheory.Functor.map_comp.{u2, u1, u3, u4} C _inst_1 D _inst_2 G x_0 x_1 x_2) x_0 x_1 x_2 f g)) X Z W g k)) (eq_self.{succ u1} (Quiver.Hom.{succ u1, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X) (Prefunctor.obj.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) W)) (Prefunctor.map.{succ u2, succ u1, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u1, u4} D (CategoryTheory.Category.toCategoryStruct.{u1, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u3, u4} C _inst_1 D _inst_2 G) X W (CategoryTheory.CategoryStruct.comp.{u2, u3} C (CategoryTheory.Category.toCategoryStruct.{u2, u3} C _inst_1) X Z W g k))))))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_descₓ'. -/
 @[simp, reassoc.1]
 theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] {W : C} {h : Y ⟶ W} {k : Z ⟶ W} (w : f ≫ h = g ≫ k) :
@@ -1545,14 +2253,17 @@ open WalkingCospan
 
 variable (f : X ⟶ Z) (g : Y ⟶ Z)
 
+#print CategoryTheory.Limits.hasPullback_symmetry /-
 /-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
 theorem hasPullback_symmetry [HasPullback f g] : HasPullback g f :=
   ⟨⟨⟨PullbackCone.mk _ _ pullback.condition.symm,
         PullbackCone.flipIsLimit (pullbackIsPullback _ _)⟩⟩⟩
 #align category_theory.limits.has_pullback_symmetry CategoryTheory.Limits.hasPullback_symmetry
+-/
 
 attribute [local instance] has_pullback_symmetry
 
+#print CategoryTheory.Limits.pullbackSymmetry /-
 /-- The isomorphism `X ×[Z] Y ≅ Y ×[Z] X`. -/
 def pullbackSymmetry [HasPullback f g] : pullback f g ≅ pullback g f :=
   IsLimit.conePointUniqueUpToIso
@@ -1560,26 +2271,35 @@ def pullbackSymmetry [HasPullback f g] : pullback f g ≅ pullback g f :=
       IsLimit (PullbackCone.mk _ _ pullback.condition.symm))
     (limit.isLimit _)
 #align category_theory.limits.pullback_symmetry CategoryTheory.Limits.pullbackSymmetry
+-/
 
+#print CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst /-
 @[simp, reassoc.1]
 theorem pullbackSymmetry_hom_comp_fst [HasPullback f g] :
     (pullbackSymmetry f g).Hom ≫ pullback.fst = pullback.snd := by simp [pullback_symmetry]
 #align category_theory.limits.pullback_symmetry_hom_comp_fst CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
+-/
 
+#print CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd /-
 @[simp, reassoc.1]
 theorem pullbackSymmetry_hom_comp_snd [HasPullback f g] :
     (pullbackSymmetry f g).Hom ≫ pullback.snd = pullback.fst := by simp [pullback_symmetry]
 #align category_theory.limits.pullback_symmetry_hom_comp_snd CategoryTheory.Limits.pullbackSymmetry_hom_comp_snd
+-/
 
+#print CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst /-
 @[simp, reassoc.1]
 theorem pullbackSymmetry_inv_comp_fst [HasPullback f g] :
     (pullbackSymmetry f g).inv ≫ pullback.fst = pullback.snd := by simp [iso.inv_comp_eq]
 #align category_theory.limits.pullback_symmetry_inv_comp_fst CategoryTheory.Limits.pullbackSymmetry_inv_comp_fst
+-/
 
+#print CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd /-
 @[simp, reassoc.1]
 theorem pullbackSymmetry_inv_comp_snd [HasPullback f g] :
     (pullbackSymmetry f g).inv ≫ pullback.snd = pullback.fst := by simp [iso.inv_comp_eq]
 #align category_theory.limits.pullback_symmetry_inv_comp_snd CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd
+-/
 
 end PullbackSymmetry
 
@@ -1589,14 +2309,17 @@ open WalkingCospan
 
 variable (f : X ⟶ Y) (g : X ⟶ Z)
 
+#print CategoryTheory.Limits.hasPushout_symmetry /-
 /-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
 theorem hasPushout_symmetry [HasPushout f g] : HasPushout g f :=
   ⟨⟨⟨PushoutCocone.mk _ _ pushout.condition.symm,
         PushoutCocone.flipIsColimit (pushoutIsPushout _ _)⟩⟩⟩
 #align category_theory.limits.has_pushout_symmetry CategoryTheory.Limits.hasPushout_symmetry
+-/
 
 attribute [local instance] has_pushout_symmetry
 
+#print CategoryTheory.Limits.pushoutSymmetry /-
 /-- The isomorphism `Y ⨿[X] Z ≅ Z ⨿[X] Y`. -/
 def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
   IsColimit.coconePointUniqueUpToIso
@@ -1604,30 +2327,39 @@ def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
       IsColimit (PushoutCocone.mk _ _ pushout.condition.symm))
     (colimit.isColimit _)
 #align category_theory.limits.pushout_symmetry CategoryTheory.Limits.pushoutSymmetry
+-/
 
+#print CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom /-
 @[simp, reassoc.1]
 theorem inl_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inl ≫ (pushoutSymmetry f g).Hom = pushout.inr :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
     (PushoutCocone.flipIsColimit (pushoutIsPushout g f)) _
 #align category_theory.limits.inl_comp_pushout_symmetry_hom CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom
+-/
 
+#print CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom /-
 @[simp, reassoc.1]
 theorem inr_comp_pushoutSymmetry_hom [HasPushout f g] :
     pushout.inr ≫ (pushoutSymmetry f g).Hom = pushout.inl :=
   (colimit.isColimit (span f g)).comp_coconePointUniqueUpToIso_hom
     (PushoutCocone.flipIsColimit (pushoutIsPushout g f)) _
 #align category_theory.limits.inr_comp_pushout_symmetry_hom CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom
+-/
 
+#print CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv /-
 @[simp, reassoc.1]
 theorem inl_comp_pushoutSymmetry_inv [HasPushout f g] :
     pushout.inl ≫ (pushoutSymmetry f g).inv = pushout.inr := by simp [iso.comp_inv_eq]
 #align category_theory.limits.inl_comp_pushout_symmetry_inv CategoryTheory.Limits.inl_comp_pushoutSymmetry_inv
+-/
 
+#print CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv /-
 @[simp, reassoc.1]
 theorem inr_comp_pushoutSymmetry_inv [HasPushout f g] :
     pushout.inr ≫ (pushoutSymmetry f g).inv = pushout.inl := by simp [iso.comp_inv_eq]
 #align category_theory.limits.inr_comp_pushout_symmetry_inv CategoryTheory.Limits.inr_comp_pushoutSymmetry_inv
+-/
 
 end PushoutSymmetry
 
@@ -1635,39 +2367,57 @@ section PullbackLeftIso
 
 open WalkingCospan
 
+#print CategoryTheory.Limits.pullbackIsPullbackOfCompMono /-
 /-- The pullback of `f, g` is also the pullback of `f ≫ i, g ≫ i` for any mono `i`. -/
 noncomputable def pullbackIsPullbackOfCompMono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i]
     [HasPullback f g] : IsLimit (PullbackCone.mk pullback.fst pullback.snd _) :=
   PullbackCone.isLimitOfCompMono f g i _ (limit.isLimit (cospan f g))
 #align category_theory.limits.pullback_is_pullback_of_comp_mono CategoryTheory.Limits.pullbackIsPullbackOfCompMono
+-/
 
+#print CategoryTheory.Limits.hasPullback_of_comp_mono /-
 instance hasPullback_of_comp_mono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i] [HasPullback f g] :
     HasPullback (f ≫ i) (g ≫ i) :=
   ⟨⟨⟨_, pullbackIsPullbackOfCompMono f g i⟩⟩⟩
 #align category_theory.limits.has_pullback_of_comp_mono CategoryTheory.Limits.hasPullback_of_comp_mono
+-/
 
 variable (f : X ⟶ Z) (g : Y ⟶ Z) [IsIso f]
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso /-
 /-- If `f : X ⟶ Z` is iso, then `X ×[Z] Y ≅ Y`. This is the explicit limit cone. -/
 def pullbackConeOfLeftIso : PullbackCone f g :=
   PullbackCone.mk (g ≫ inv f) (𝟙 _) <| by simp
 #align category_theory.limits.pullback_cone_of_left_iso CategoryTheory.Limits.pullbackConeOfLeftIso
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_x /-
 @[simp]
-theorem pullbackConeOfLeftIso_pt : (pullbackConeOfLeftIso f g).pt = Y :=
+theorem pullbackConeOfLeftIso_x : (pullbackConeOfLeftIso f g).pt = Y :=
   rfl
-#align category_theory.limits.pullback_cone_of_left_iso_X CategoryTheory.Limits.pullbackConeOfLeftIso_pt
+#align category_theory.limits.pullback_cone_of_left_iso_X CategoryTheory.Limits.pullbackConeOfLeftIso_x
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_fst /-
 @[simp]
 theorem pullbackConeOfLeftIso_fst : (pullbackConeOfLeftIso f g).fst = g ≫ inv f :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_fst CategoryTheory.Limits.pullbackConeOfLeftIso_fst
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIso_snd /-
 @[simp]
 theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_snd CategoryTheory.Limits.pullbackConeOfLeftIso_snd
+-/
 
+/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g :=
   by
@@ -1675,27 +2425,44 @@ theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app n
   simp
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
 
+/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) Z (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) g (CategoryTheory.inv.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left) Z f _inst_3))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y Z X g (CategoryTheory.inv.{u1, u2} C _inst_1 X Z f _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_left : (pullbackConeOfLeftIso f g).π.app left = g ≫ inv f :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_left CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left
 
+/- warning: category_theory.limits.pullback_cone_of_left_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_left_iso_π_app_right CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfLeftIso_π_app_right : (pullbackConeOfLeftIso f g).π.app right = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_right CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right
 
+#print CategoryTheory.Limits.pullbackConeOfLeftIsoIsLimit /-
 /-- Verify that the constructed limit cone is indeed a limit. -/
 def pullbackConeOfLeftIsoIsLimit : IsLimit (pullbackConeOfLeftIso f g) :=
   PullbackCone.isLimitAux' _ fun s => ⟨s.snd, by simp [← s.condition_assoc]⟩
 #align category_theory.limits.pullback_cone_of_left_iso_is_limit CategoryTheory.Limits.pullbackConeOfLeftIsoIsLimit
+-/
 
+#print CategoryTheory.Limits.hasPullback_of_left_iso /-
 theorem hasPullback_of_left_iso : HasPullback f g :=
   ⟨⟨⟨_, pullbackConeOfLeftIsoIsLimit f g⟩⟩⟩
 #align category_theory.limits.has_pullback_of_left_iso CategoryTheory.Limits.hasPullback_of_left_iso
+-/
 
 attribute [local instance] has_pullback_of_left_iso
 
+#print CategoryTheory.Limits.pullback_snd_iso_of_left_iso /-
 instance pullback_snd_iso_of_left_iso : IsIso (pullback.snd : pullback f g ⟶ _) :=
   by
   refine' ⟨⟨pullback.lift (g ≫ inv f) (𝟙 _) (by simp), _, by simp⟩⟩
@@ -1703,9 +2470,11 @@ instance pullback_snd_iso_of_left_iso : IsIso (pullback.snd : pullback f g ⟶ _
   · simp [← pullback.condition_assoc]
   · simp [pullback.condition_assoc]
 #align category_theory.limits.pullback_snd_iso_of_left_iso CategoryTheory.Limits.pullback_snd_iso_of_left_iso
+-/
 
 variable (i : Z ⟶ W) [Mono i]
 
+#print CategoryTheory.Limits.hasPullback_of_right_factors_mono /-
 instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫ i) :=
   by
   conv =>
@@ -1713,7 +2482,9 @@ instance hasPullback_of_right_factors_mono (f : X ⟶ Z) : HasPullback i (f ≫
     rw [← category.id_comp i]
   infer_instance
 #align category_theory.limits.has_pullback_of_right_factors_mono CategoryTheory.Limits.hasPullback_of_right_factors_mono
+-/
 
+#print CategoryTheory.Limits.pullback_snd_iso_of_right_factors_mono /-
 instance pullback_snd_iso_of_right_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.snd : pullback i (f ≫ i) ⟶ _) := by
   convert
@@ -1724,6 +2495,7 @@ instance pullback_snd_iso_of_right_factors_mono (f : X ⟶ Z) :
         inferInstance <;>
     exact (category.id_comp _).symm
 #align category_theory.limits.pullback_snd_iso_of_right_factors_mono CategoryTheory.Limits.pullback_snd_iso_of_right_factors_mono
+-/
 
 end PullbackLeftIso
 
@@ -1733,52 +2505,83 @@ open WalkingCospan
 
 variable (f : X ⟶ Z) (g : Y ⟶ Z) [IsIso g]
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso /-
 /-- If `g : Y ⟶ Z` is iso, then `X ×[Z] Y ≅ X`. This is the explicit limit cone. -/
 def pullbackConeOfRightIso : PullbackCone f g :=
   PullbackCone.mk (𝟙 _) (f ≫ inv g) <| by simp
 #align category_theory.limits.pullback_cone_of_right_iso CategoryTheory.Limits.pullbackConeOfRightIso
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_x /-
 @[simp]
-theorem pullbackConeOfRightIso_pt : (pullbackConeOfRightIso f g).pt = X :=
+theorem pullbackConeOfRightIso_x : (pullbackConeOfRightIso f g).pt = X :=
   rfl
-#align category_theory.limits.pullback_cone_of_right_iso_X CategoryTheory.Limits.pullbackConeOfRightIso_pt
+#align category_theory.limits.pullback_cone_of_right_iso_X CategoryTheory.Limits.pullbackConeOfRightIso_x
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_fst /-
 @[simp]
 theorem pullbackConeOfRightIso_fst : (pullbackConeOfRightIso f g).fst = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_fst CategoryTheory.Limits.pullbackConeOfRightIso_fst
+-/
 
+#print CategoryTheory.Limits.pullbackConeOfRightIso_snd /-
 @[simp]
 theorem pullbackConeOfRightIso_snd : (pullbackConeOfRightIso f g).snd = f ≫ inv g :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_snd CategoryTheory.Limits.pullbackConeOfRightIso_snd
+-/
 
+/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_none -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_noneₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app none = f :=
   Category.id_comp _
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none
 
+/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_left -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.left))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_leftₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
 
+/- warning: category_theory.limits.pullback_cone_of_right_iso_π_app_right -> CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingCospan.right) Z (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) f (CategoryTheory.inv.{u1, u2} C _inst_1 (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingCospan.right) Z g _inst_3))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 Y Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingCospan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingCospan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.Cone.π.{0, u1, 0, u2} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.cospan.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pullbackConeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingCospan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) X Z Y f (CategoryTheory.inv.{u1, u2} C _inst_1 Y Z g _inst_3))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_rightₓ'. -/
 @[simp]
 theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g :=
   rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right
 
+#print CategoryTheory.Limits.pullbackConeOfRightIsoIsLimit /-
 /-- Verify that the constructed limit cone is indeed a limit. -/
 def pullbackConeOfRightIsoIsLimit : IsLimit (pullbackConeOfRightIso f g) :=
   PullbackCone.isLimitAux' _ fun s => ⟨s.fst, by simp [s.condition_assoc]⟩
 #align category_theory.limits.pullback_cone_of_right_iso_is_limit CategoryTheory.Limits.pullbackConeOfRightIsoIsLimit
+-/
 
+#print CategoryTheory.Limits.hasPullback_of_right_iso /-
 theorem hasPullback_of_right_iso : HasPullback f g :=
   ⟨⟨⟨_, pullbackConeOfRightIsoIsLimit f g⟩⟩⟩
 #align category_theory.limits.has_pullback_of_right_iso CategoryTheory.Limits.hasPullback_of_right_iso
+-/
 
 attribute [local instance] has_pullback_of_right_iso
 
+#print CategoryTheory.Limits.pullback_snd_iso_of_right_iso /-
 instance pullback_snd_iso_of_right_iso : IsIso (pullback.fst : pullback f g ⟶ _) :=
   by
   refine' ⟨⟨pullback.lift (𝟙 _) (f ≫ inv g) (by simp), _, by simp⟩⟩
@@ -1786,9 +2589,11 @@ instance pullback_snd_iso_of_right_iso : IsIso (pullback.fst : pullback f g ⟶
   · simp
   · simp [pullback.condition_assoc]
 #align category_theory.limits.pullback_snd_iso_of_right_iso CategoryTheory.Limits.pullback_snd_iso_of_right_iso
+-/
 
 variable (i : Z ⟶ W) [Mono i]
 
+#print CategoryTheory.Limits.hasPullback_of_left_factors_mono /-
 instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i) i :=
   by
   conv =>
@@ -1797,7 +2602,9 @@ instance hasPullback_of_left_factors_mono (f : X ⟶ Z) : HasPullback (f ≫ i)
     rw [← category.id_comp i]
   infer_instance
 #align category_theory.limits.has_pullback_of_left_factors_mono CategoryTheory.Limits.hasPullback_of_left_factors_mono
+-/
 
+#print CategoryTheory.Limits.pullback_snd_iso_of_left_factors_mono /-
 instance pullback_snd_iso_of_left_factors_mono (f : X ⟶ Z) :
     IsIso (pullback.fst : pullback (f ≫ i) i ⟶ _) := by
   convert
@@ -1808,6 +2615,7 @@ instance pullback_snd_iso_of_left_factors_mono (f : X ⟶ Z) :
         inferInstance <;>
     exact (category.id_comp _).symm
 #align category_theory.limits.pullback_snd_iso_of_left_factors_mono CategoryTheory.Limits.pullback_snd_iso_of_left_factors_mono
+-/
 
 end PullbackRightIso
 
@@ -1815,39 +2623,57 @@ section PushoutLeftIso
 
 open WalkingSpan
 
+#print CategoryTheory.Limits.pushoutIsPushoutOfEpiComp /-
 /-- The pushout of `f, g` is also the pullback of `h ≫ f, h ≫ g` for any epi `h`. -/
 noncomputable def pushoutIsPushoutOfEpiComp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h]
     [HasPushout f g] : IsColimit (PushoutCocone.mk pushout.inl pushout.inr _) :=
   PushoutCocone.isColimitOfEpiComp f g h _ (colimit.isColimit (span f g))
 #align category_theory.limits.pushout_is_pushout_of_epi_comp CategoryTheory.Limits.pushoutIsPushoutOfEpiComp
+-/
 
+#print CategoryTheory.Limits.hasPushout_of_epi_comp /-
 instance hasPushout_of_epi_comp (f : X ⟶ Y) (g : X ⟶ Z) (h : W ⟶ X) [Epi h] [HasPushout f g] :
     HasPushout (h ≫ f) (h ≫ g) :=
   ⟨⟨⟨_, pushoutIsPushoutOfEpiComp f g h⟩⟩⟩
 #align category_theory.limits.has_pushout_of_epi_comp CategoryTheory.Limits.hasPushout_of_epi_comp
+-/
 
 variable (f : X ⟶ Y) (g : X ⟶ Z) [IsIso f]
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso /-
 /-- If `f : X ⟶ Y` is iso, then `Y ⨿[X] Z ≅ Z`. This is the explicit colimit cocone. -/
 def pushoutCoconeOfLeftIso : PushoutCocone f g :=
   PushoutCocone.mk (inv f ≫ g) (𝟙 _) <| by simp
 #align category_theory.limits.pushout_cocone_of_left_iso CategoryTheory.Limits.pushoutCoconeOfLeftIso
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_x /-
 @[simp]
-theorem pushoutCoconeOfLeftIso_pt : (pushoutCoconeOfLeftIso f g).pt = Z :=
+theorem pushoutCoconeOfLeftIso_x : (pushoutCoconeOfLeftIso f g).pt = Z :=
   rfl
-#align category_theory.limits.pushout_cocone_of_left_iso_X CategoryTheory.Limits.pushoutCoconeOfLeftIso_pt
+#align category_theory.limits.pushout_cocone_of_left_iso_X CategoryTheory.Limits.pushoutCoconeOfLeftIso_x
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_inl /-
 @[simp]
 theorem pushoutCoconeOfLeftIso_inl : (pushoutCoconeOfLeftIso f g).inl = inv f ≫ g :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_inl CategoryTheory.Limits.pushoutCoconeOfLeftIso_inl
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr /-
 @[simp]
 theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_inr CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr
+-/
 
+/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) g
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g :=
   by
@@ -1855,27 +2681,44 @@ theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app
   simp
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
 
+/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.inv.{u1, u2} C _inst_1 X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) f _inst_3) g)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Y X Z (CategoryTheory.inv.{u1, u2} C _inst_1 X Y f _inst_3) g)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_left : (pushoutCoconeOfLeftIso f g).ι.app left = inv f ≫ g :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left
 
+/- warning: category_theory.limits.pushout_cocone_of_left_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Y f], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfLeftIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_left_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfLeftIso_ι_app_right : (pushoutCoconeOfLeftIso f g).ι.app right = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right
 
+#print CategoryTheory.Limits.pushoutCoconeOfLeftIsoIsLimit /-
 /-- Verify that the constructed cocone is indeed a colimit. -/
 def pushoutCoconeOfLeftIsoIsLimit : IsColimit (pushoutCoconeOfLeftIso f g) :=
   PushoutCocone.isColimitAux' _ fun s => ⟨s.inr, by simp [← s.condition]⟩
 #align category_theory.limits.pushout_cocone_of_left_iso_is_limit CategoryTheory.Limits.pushoutCoconeOfLeftIsoIsLimit
+-/
 
+#print CategoryTheory.Limits.hasPushout_of_left_iso /-
 theorem hasPushout_of_left_iso : HasPushout f g :=
   ⟨⟨⟨_, pushoutCoconeOfLeftIsoIsLimit f g⟩⟩⟩
 #align category_theory.limits.has_pushout_of_left_iso CategoryTheory.Limits.hasPushout_of_left_iso
+-/
 
 attribute [local instance] has_pushout_of_left_iso
 
+#print CategoryTheory.Limits.pushout_inr_iso_of_left_iso /-
 instance pushout_inr_iso_of_left_iso : IsIso (pushout.inr : _ ⟶ pushout f g) :=
   by
   refine' ⟨⟨pushout.desc (inv f ≫ g) (𝟙 _) (by simp), by simp, _⟩⟩
@@ -1883,9 +2726,11 @@ instance pushout_inr_iso_of_left_iso : IsIso (pushout.inr : _ ⟶ pushout f g) :
   · simp [← pushout.condition]
   · simp [pushout.condition_assoc]
 #align category_theory.limits.pushout_inr_iso_of_left_iso CategoryTheory.Limits.pushout_inr_iso_of_left_iso
+-/
 
 variable (h : W ⟶ X) [Epi h]
 
+#print CategoryTheory.Limits.hasPushout_of_right_factors_epi /-
 instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f) :=
   by
   conv =>
@@ -1893,7 +2738,9 @@ instance hasPushout_of_right_factors_epi (f : X ⟶ Y) : HasPushout h (h ≫ f)
     rw [← category.comp_id h]
   infer_instance
 #align category_theory.limits.has_pushout_of_right_factors_epi CategoryTheory.Limits.hasPushout_of_right_factors_epi
+-/
 
+#print CategoryTheory.Limits.pushout_inr_iso_of_right_factors_epi /-
 instance pushout_inr_iso_of_right_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inr : _ ⟶ pushout h (h ≫ f)) := by
   convert
@@ -1904,6 +2751,7 @@ instance pushout_inr_iso_of_right_factors_epi (f : X ⟶ Y) :
         inferInstance <;>
     exact (category.comp_id _).symm
 #align category_theory.limits.pushout_inr_iso_of_right_factors_epi CategoryTheory.Limits.pushout_inr_iso_of_right_factors_epi
+-/
 
 end PushoutLeftIso
 
@@ -1913,26 +2761,40 @@ open WalkingSpan
 
 variable (f : X ⟶ Y) (g : X ⟶ Z) [IsIso g]
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso /-
 /-- If `f : X ⟶ Z` is iso, then `Y ⨿[X] Z ≅ Y`. This is the explicit colimit cocone. -/
 def pushoutCoconeOfRightIso : PushoutCocone f g :=
   PushoutCocone.mk (𝟙 _) (inv g ≫ f) <| by simp
 #align category_theory.limits.pushout_cocone_of_right_iso CategoryTheory.Limits.pushoutCoconeOfRightIso
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_x /-
 @[simp]
-theorem pushoutCoconeOfRightIso_pt : (pushoutCoconeOfRightIso f g).pt = Y :=
+theorem pushoutCoconeOfRightIso_x : (pushoutCoconeOfRightIso f g).pt = Y :=
   rfl
-#align category_theory.limits.pushout_cocone_of_right_iso_X CategoryTheory.Limits.pushoutCoconeOfRightIso_pt
+#align category_theory.limits.pushout_cocone_of_right_iso_X CategoryTheory.Limits.pushoutCoconeOfRightIso_x
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_inl /-
 @[simp]
 theorem pushoutCoconeOfRightIso_inl : (pushoutCoconeOfRightIso f g).inl = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_inl CategoryTheory.Limits.pushoutCoconeOfRightIso_inl
+-/
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIso_inr /-
 @[simp]
 theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g ≫ f :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_inr CategoryTheory.Limits.pushoutCoconeOfRightIso_inr
+-/
 
+/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_none -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) (Option.none.{0} CategoryTheory.Limits.WalkingPair))) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) (Option.none.{0} CategoryTheory.Limits.WalkingPair)) f
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_noneₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f :=
   by
@@ -1940,28 +2802,45 @@ theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.a
   simp
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
 
+/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_left -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.left))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.left)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.left) (CategoryTheory.CategoryStruct.id.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.left))
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_leftₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_left : (pushoutCoconeOfRightIso f g).ι.app left = 𝟙 _ :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_left CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left
 
+/- warning: category_theory.limits.pushout_cocone_of_right_iso_ι_app_right -> CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u2, max u1 u2} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.inv.{u1, u2} C _inst_1 X (CategoryTheory.Functor.obj.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) CategoryTheory.Limits.WalkingSpan.right) g _inst_3) f)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {X : C} {Y : C} {Z : C} (f : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Y) (g : Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) X Z) [_inst_3 : CategoryTheory.IsIso.{u1, u2} C _inst_1 X Z g], Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g)) CategoryTheory.Limits.WalkingSpan.right) (Prefunctor.obj.{1, succ u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.CategoryStruct.toQuiver.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.toCategoryStruct.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)))) CategoryTheory.Limits.WalkingSpan.right)) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (Prefunctor.obj.{succ u1, succ u1, u2, max u1 u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u2, max u2 u1} C _inst_1 (CategoryTheory.Functor.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1) (CategoryTheory.Functor.const.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1)) (CategoryTheory.Limits.Cocone.pt.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3))) (CategoryTheory.Limits.Cocone.ι.{0, u1, 0, u2} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair) C _inst_1 (CategoryTheory.Limits.span.{u1, u2} C _inst_1 X Y Z f g) (CategoryTheory.Limits.pushoutCoconeOfRightIso.{u1, u2} C _inst_1 X Y Z f g _inst_3)) CategoryTheory.Limits.WalkingSpan.right) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) Z X Y (CategoryTheory.inv.{u1, u2} C _inst_1 X Z g _inst_3) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.pushout_cocone_of_right_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_rightₓ'. -/
 @[simp]
 theorem pushoutCoconeOfRightIso_ι_app_right :
     (pushoutCoconeOfRightIso f g).ι.app right = inv g ≫ f :=
   rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_right CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right
 
+#print CategoryTheory.Limits.pushoutCoconeOfRightIsoIsLimit /-
 /-- Verify that the constructed cocone is indeed a colimit. -/
 def pushoutCoconeOfRightIsoIsLimit : IsColimit (pushoutCoconeOfRightIso f g) :=
   PushoutCocone.isColimitAux' _ fun s => ⟨s.inl, by simp [← s.condition]⟩
 #align category_theory.limits.pushout_cocone_of_right_iso_is_limit CategoryTheory.Limits.pushoutCoconeOfRightIsoIsLimit
+-/
 
+#print CategoryTheory.Limits.hasPushout_of_right_iso /-
 theorem hasPushout_of_right_iso : HasPushout f g :=
   ⟨⟨⟨_, pushoutCoconeOfRightIsoIsLimit f g⟩⟩⟩
 #align category_theory.limits.has_pushout_of_right_iso CategoryTheory.Limits.hasPushout_of_right_iso
+-/
 
 attribute [local instance] has_pushout_of_right_iso
 
+#print CategoryTheory.Limits.pushout_inl_iso_of_right_iso /-
 instance pushout_inl_iso_of_right_iso : IsIso (pushout.inl : _ ⟶ pushout f g) :=
   by
   refine' ⟨⟨pushout.desc (𝟙 _) (inv g ≫ f) (by simp), by simp, _⟩⟩
@@ -1969,9 +2848,11 @@ instance pushout_inl_iso_of_right_iso : IsIso (pushout.inl : _ ⟶ pushout f g)
   · simp [← pushout.condition]
   · simp [pushout.condition]
 #align category_theory.limits.pushout_inl_iso_of_right_iso CategoryTheory.Limits.pushout_inl_iso_of_right_iso
+-/
 
 variable (h : W ⟶ X) [Epi h]
 
+#print CategoryTheory.Limits.hasPushout_of_left_factors_epi /-
 instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h :=
   by
   conv =>
@@ -1980,7 +2861,9 @@ instance hasPushout_of_left_factors_epi (f : X ⟶ Y) : HasPushout (h ≫ f) h :
     rw [← category.comp_id h]
   infer_instance
 #align category_theory.limits.has_pushout_of_left_factors_epi CategoryTheory.Limits.hasPushout_of_left_factors_epi
+-/
 
+#print CategoryTheory.Limits.pushout_inl_iso_of_left_factors_epi /-
 instance pushout_inl_iso_of_left_factors_epi (f : X ⟶ Y) :
     IsIso (pushout.inl : _ ⟶ pushout (h ≫ f) h) := by
   convert
@@ -1991,6 +2874,7 @@ instance pushout_inl_iso_of_left_factors_epi (f : X ⟶ Y) :
         inferInstance <;>
     exact (category.comp_id _).symm
 #align category_theory.limits.pushout_inl_iso_of_left_factors_epi CategoryTheory.Limits.pushout_inl_iso_of_left_factors_epi
+-/
 
 end PushoutRightIso
 
@@ -2000,20 +2884,27 @@ open WalkingCospan
 
 variable (f : X ⟶ Y)
 
+#print CategoryTheory.Limits.has_kernel_pair_of_mono /-
 instance has_kernel_pair_of_mono [Mono f] : HasPullback f f :=
   ⟨⟨⟨_, PullbackCone.isLimitMkIdId f⟩⟩⟩
 #align category_theory.limits.has_kernel_pair_of_mono CategoryTheory.Limits.has_kernel_pair_of_mono
+-/
 
+#print CategoryTheory.Limits.fst_eq_snd_of_mono_eq /-
 theorem fst_eq_snd_of_mono_eq [Mono f] : (pullback.fst : pullback f f ⟶ _) = pullback.snd :=
   ((PullbackCone.isLimitMkIdId f).fac (getLimitCone (cospan f f)).Cone left).symm.trans
     ((PullbackCone.isLimitMkIdId f).fac (getLimitCone (cospan f f)).Cone right : _)
 #align category_theory.limits.fst_eq_snd_of_mono_eq CategoryTheory.Limits.fst_eq_snd_of_mono_eq
+-/
 
+#print CategoryTheory.Limits.pullbackSymmetry_hom_of_mono_eq /-
 @[simp]
 theorem pullbackSymmetry_hom_of_mono_eq [Mono f] : (pullbackSymmetry f f).Hom = 𝟙 _ := by
   ext <;> simp [fst_eq_snd_of_mono_eq]
 #align category_theory.limits.pullback_symmetry_hom_of_mono_eq CategoryTheory.Limits.pullbackSymmetry_hom_of_mono_eq
+-/
 
+#print CategoryTheory.Limits.fst_iso_of_mono_eq /-
 instance fst_iso_of_mono_eq [Mono f] : IsIso (pullback.fst : pullback f f ⟶ _) :=
   by
   refine' ⟨⟨pullback.lift (𝟙 _) (𝟙 _) (by simp), _, by simp⟩⟩
@@ -2021,12 +2912,15 @@ instance fst_iso_of_mono_eq [Mono f] : IsIso (pullback.fst : pullback f f ⟶ _)
   · simp
   · simp [fst_eq_snd_of_mono_eq]
 #align category_theory.limits.fst_iso_of_mono_eq CategoryTheory.Limits.fst_iso_of_mono_eq
+-/
 
+#print CategoryTheory.Limits.snd_iso_of_mono_eq /-
 instance snd_iso_of_mono_eq [Mono f] : IsIso (pullback.snd : pullback f f ⟶ _) :=
   by
   rw [← fst_eq_snd_of_mono_eq]
   infer_instance
 #align category_theory.limits.snd_iso_of_mono_eq CategoryTheory.Limits.snd_iso_of_mono_eq
+-/
 
 end
 
@@ -2036,20 +2930,27 @@ open WalkingSpan
 
 variable (f : X ⟶ Y)
 
+#print CategoryTheory.Limits.has_cokernel_pair_of_epi /-
 instance has_cokernel_pair_of_epi [Epi f] : HasPushout f f :=
   ⟨⟨⟨_, PushoutCocone.isColimitMkIdId f⟩⟩⟩
 #align category_theory.limits.has_cokernel_pair_of_epi CategoryTheory.Limits.has_cokernel_pair_of_epi
+-/
 
+#print CategoryTheory.Limits.inl_eq_inr_of_epi_eq /-
 theorem inl_eq_inr_of_epi_eq [Epi f] : (pushout.inl : _ ⟶ pushout f f) = pushout.inr :=
   ((PushoutCocone.isColimitMkIdId f).fac (getColimitCocone (span f f)).Cocone left).symm.trans
     ((PushoutCocone.isColimitMkIdId f).fac (getColimitCocone (span f f)).Cocone right : _)
 #align category_theory.limits.inl_eq_inr_of_epi_eq CategoryTheory.Limits.inl_eq_inr_of_epi_eq
+-/
 
+#print CategoryTheory.Limits.pullback_symmetry_hom_of_epi_eq /-
 @[simp]
 theorem pullback_symmetry_hom_of_epi_eq [Epi f] : (pushoutSymmetry f f).Hom = 𝟙 _ := by
   ext <;> simp [inl_eq_inr_of_epi_eq]
 #align category_theory.limits.pullback_symmetry_hom_of_epi_eq CategoryTheory.Limits.pullback_symmetry_hom_of_epi_eq
+-/
 
+#print CategoryTheory.Limits.inl_iso_of_epi_eq /-
 instance inl_iso_of_epi_eq [Epi f] : IsIso (pushout.inl : _ ⟶ pushout f f) :=
   by
   refine' ⟨⟨pushout.desc (𝟙 _) (𝟙 _) (by simp), by simp, _⟩⟩
@@ -2057,12 +2958,15 @@ instance inl_iso_of_epi_eq [Epi f] : IsIso (pushout.inl : _ ⟶ pushout f f) :=
   · simp
   · simp [inl_eq_inr_of_epi_eq]
 #align category_theory.limits.inl_iso_of_epi_eq CategoryTheory.Limits.inl_iso_of_epi_eq
+-/
 
+#print CategoryTheory.Limits.inr_iso_of_epi_eq /-
 instance inr_iso_of_epi_eq [Epi f] : IsIso (pushout.inr : _ ⟶ pushout f f) :=
   by
   rw [← inl_eq_inr_of_epi_eq]
   infer_instance
 #align category_theory.limits.inr_iso_of_epi_eq CategoryTheory.Limits.inr_iso_of_epi_eq
+-/
 
 end
 
@@ -2074,6 +2978,7 @@ variable (i₁ : X₁ ⟶ Y₁) (i₂ : X₂ ⟶ Y₂) (i₃ : X₃ ⟶ Y₃)
 
 variable (h₁ : i₁ ≫ g₁ = f₁ ≫ i₂) (h₂ : i₂ ≫ g₂ = f₂ ≫ i₃)
 
+#print CategoryTheory.Limits.bigSquareIsPullback /-
 /-- Given
 
 X₁ - f₁ -> X₂ - f₂ -> X₃
@@ -2110,7 +3015,9 @@ def bigSquareIsPullback (H : IsLimit (PullbackCone.mk _ _ h₂))
       rfl
     · erw [category.assoc, hm₂, ← hl₁', ← hl₂']
 #align category_theory.limits.big_square_is_pullback CategoryTheory.Limits.bigSquareIsPullback
+-/
 
+#print CategoryTheory.Limits.bigSquareIsPushout /-
 /-- Given
 
 X₁ - f₁ -> X₂ - f₂ -> X₃
@@ -2148,7 +3055,9 @@ def bigSquareIsPushout (H : IsColimit (PushoutCocone.mk _ _ h₂))
       rfl
   · erw [hm₂, hl₂']
 #align category_theory.limits.big_square_is_pushout CategoryTheory.Limits.bigSquareIsPushout
+-/
 
+#print CategoryTheory.Limits.leftSquareIsPullback /-
 /-- Given
 
 X₁ - f₁ -> X₂ - f₂ -> X₃
@@ -2186,7 +3095,9 @@ def leftSquareIsPullback (H : IsLimit (PullbackCone.mk _ _ h₂))
     · erw [hl₁', ← hm₂]
       exact (category.assoc _ _ _).symm
 #align category_theory.limits.left_square_is_pullback CategoryTheory.Limits.leftSquareIsPullback
+-/
 
+#print CategoryTheory.Limits.rightSquareIsPushout /-
 /-- Given
 
 X₁ - f₁ -> X₂ - f₂ -> X₃
@@ -2223,6 +3134,7 @@ def rightSquareIsPushout (H : IsColimit (PushoutCocone.mk _ _ h₁))
     · erw [hl₁, category.assoc, hm₁]
     · erw [hm₂, hl₁']
 #align category_theory.limits.right_square_is_pushout CategoryTheory.Limits.rightSquareIsPushout
+-/
 
 end PasteLemma
 
@@ -2234,6 +3146,7 @@ variable [HasPullback f g] [HasPullback f' (pullback.fst : pullback f g ⟶ _)]
 
 variable [HasPullback (f' ≫ f) g]
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso /-
 /-- The canonical isomorphism `W ×[X] (X ×[Z] Y) ≅ W ×[Z] Y` -/
 noncomputable def pullbackRightPullbackFstIso :
     pullback f' (pullback.fst : pullback f g ⟶ _) ≅ pullback (f' ≫ f) g :=
@@ -2244,31 +3157,41 @@ noncomputable def pullbackRightPullbackFstIso :
       (pullback_is_pullback _ _) (pullback_is_pullback _ _)
   exact (this.cone_point_unique_up_to_iso (pullback_is_pullback _ _) : _)
 #align category_theory.limits.pullback_right_pullback_fst_iso CategoryTheory.Limits.pullbackRightPullbackFstIso
+-/
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst /-
 @[simp, reassoc.1]
 theorem pullbackRightPullbackFstIso_hom_fst :
     (pullbackRightPullbackFstIso f g f').Hom ≫ pullback.fst = pullback.fst :=
   IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.left
 #align category_theory.limits.pullback_right_pullback_fst_iso_hom_fst CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_fst
+-/
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd /-
 @[simp, reassoc.1]
 theorem pullbackRightPullbackFstIso_hom_snd :
     (pullbackRightPullbackFstIso f g f').Hom ≫ pullback.snd = pullback.snd ≫ pullback.snd :=
   IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
 #align category_theory.limits.pullback_right_pullback_fst_iso_hom_snd CategoryTheory.Limits.pullbackRightPullbackFstIso_hom_snd
+-/
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_fst /-
 @[simp, reassoc.1]
 theorem pullbackRightPullbackFstIso_inv_fst :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.fst = pullback.fst :=
   IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.left
 #align category_theory.limits.pullback_right_pullback_fst_iso_inv_fst CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_fst
+-/
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd /-
 @[simp, reassoc.1]
 theorem pullbackRightPullbackFstIso_inv_snd_snd :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.snd ≫ pullback.snd = pullback.snd :=
   IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.right
 #align category_theory.limits.pullback_right_pullback_fst_iso_inv_snd_snd CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_snd
+-/
 
+#print CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst /-
 @[simp, reassoc.1]
 theorem pullbackRightPullbackFstIso_inv_snd_fst :
     (pullbackRightPullbackFstIso f g f').inv ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ f' :=
@@ -2276,6 +3199,7 @@ theorem pullbackRightPullbackFstIso_inv_snd_fst :
   rw [← pullback.condition]
   exact pullback_right_pullback_fst_iso_inv_fst_assoc _ _ _ _
 #align category_theory.limits.pullback_right_pullback_fst_iso_inv_snd_fst CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst
+-/
 
 end
 
@@ -2287,6 +3211,7 @@ variable [HasPushout f g] [HasPushout (pushout.inr : _ ⟶ pushout f g) g']
 
 variable [HasPushout f (g ≫ g')]
 
+#print CategoryTheory.Limits.pushoutLeftPushoutInrIso /-
 /-- The canonical isomorphism `(Y ⨿[X] Z) ⨿[Z] W ≅ Y ×[X] W` -/
 noncomputable def pushoutLeftPushoutInrIso :
     pushout (pushout.inr : _ ⟶ pushout f g) g' ≅ pushout f (g ≫ g') :=
@@ -2295,7 +3220,9 @@ noncomputable def pushoutLeftPushoutInrIso :
       (pushoutIsPushout _ _) :
     _)
 #align category_theory.limits.pushout_left_pushout_inr_iso CategoryTheory.Limits.pushoutLeftPushoutInrIso
+-/
 
+#print CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv /-
 @[simp, reassoc.1]
 theorem inl_pushoutLeftPushoutInrIso_inv :
     pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').inv = pushout.inl ≫ pushout.inl :=
@@ -2304,7 +3231,9 @@ theorem inl_pushoutLeftPushoutInrIso_inv :
       (pushoutIsPushout _ _) WalkingSpan.left :
     _)
 #align category_theory.limits.inl_pushout_left_pushout_inr_iso_inv CategoryTheory.Limits.inl_pushoutLeftPushoutInrIso_inv
+-/
 
+#print CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_hom /-
 @[simp, reassoc.1]
 theorem inr_pushoutLeftPushoutInrIso_hom :
     pushout.inr ≫ (pushoutLeftPushoutInrIso f g g').Hom = pushout.inr :=
@@ -2313,25 +3242,32 @@ theorem inr_pushoutLeftPushoutInrIso_hom :
       (pushoutIsPushout _ _) WalkingSpan.right :
     _)
 #align category_theory.limits.inr_pushout_left_pushout_inr_iso_hom CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_hom
+-/
 
+#print CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_inv /-
 @[simp, reassoc.1]
 theorem inr_pushoutLeftPushoutInrIso_inv :
     pushout.inr ≫ (pushoutLeftPushoutInrIso f g g').inv = pushout.inr := by
   rw [iso.comp_inv_eq, inr_pushout_left_pushout_inr_iso_hom]
 #align category_theory.limits.inr_pushout_left_pushout_inr_iso_inv CategoryTheory.Limits.inr_pushoutLeftPushoutInrIso_inv
+-/
 
+#print CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom /-
 @[simp, reassoc.1]
 theorem inl_inl_pushoutLeftPushoutInrIso_hom :
     pushout.inl ≫ pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').Hom = pushout.inl := by
   rw [← category.assoc, ← iso.eq_comp_inv, inl_pushout_left_pushout_inr_iso_inv]
 #align category_theory.limits.inl_inl_pushout_left_pushout_inr_iso_hom CategoryTheory.Limits.inl_inl_pushoutLeftPushoutInrIso_hom
+-/
 
+#print CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom /-
 @[simp, reassoc.1]
 theorem inr_inl_pushoutLeftPushoutInrIso_hom :
     pushout.inr ≫ pushout.inl ≫ (pushoutLeftPushoutInrIso f g g').Hom = g' ≫ pushout.inr := by
   rw [← category.assoc, ← iso.eq_comp_inv, category.assoc, inr_pushout_left_pushout_inr_iso_inv,
     pushout.condition]
 #align category_theory.limits.inr_inl_pushout_left_pushout_inr_iso_hom CategoryTheory.Limits.inr_inl_pushoutLeftPushoutInrIso_hom
+-/
 
 end
 
@@ -2422,6 +3358,7 @@ local notation "l₁'" =>
 -- mathport name: exprl₂'
 local notation "l₂'" => (pullback.snd : W' ⟶ Z₂)
 
+#print CategoryTheory.Limits.pullbackPullbackLeftIsPullback /-
 /-- `(X₁ ×[Y₁] X₂) ×[Y₂] X₃` is the pullback `(X₁ ×[Y₁] X₂) ×[X₂] (X₂ ×[Y₂] X₃)`. -/
 def pullbackPullbackLeftIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
     IsLimit (PullbackCone.mk l₁ l₂ (show l₁ ≫ g₂ = l₂ ≫ g₃ from (pullback.lift_fst _ _ _).symm)) :=
@@ -2431,7 +3368,9 @@ def pullbackPullbackLeftIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
   convert pullback_is_pullback (g₂ ≫ f₃) f₄
   rw [pullback.lift_snd]
 #align category_theory.limits.pullback_pullback_left_is_pullback CategoryTheory.Limits.pullbackPullbackLeftIsPullback
+-/
 
+#print CategoryTheory.Limits.pullbackAssocIsPullback /-
 /-- `(X₁ ×[Y₁] X₂) ×[Y₂] X₃` is the pullback `X₁ ×[Y₁] (X₂ ×[Y₂] X₃)`. -/
 def pullbackAssocIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
     IsLimit
@@ -2448,11 +3387,15 @@ def pullbackAssocIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
   · exact pullback.lift_fst _ _ _
   · exact pullback.condition.symm
 #align category_theory.limits.pullback_assoc_is_pullback CategoryTheory.Limits.pullbackAssocIsPullback
+-/
 
+#print CategoryTheory.Limits.hasPullback_assoc /-
 theorem hasPullback_assoc [HasPullback (g₂ ≫ f₃) f₄] : HasPullback f₁ (g₃ ≫ f₂) :=
   ⟨⟨⟨_, pullbackAssocIsPullback f₁ f₂ f₃ f₄⟩⟩⟩
 #align category_theory.limits.has_pullback_assoc CategoryTheory.Limits.hasPullback_assoc
+-/
 
+#print CategoryTheory.Limits.pullbackPullbackRightIsPullback /-
 /-- `X₁ ×[Y₁] (X₂ ×[Y₂] X₃)` is the pullback `(X₁ ×[Y₁] X₂) ×[X₂] (X₂ ×[Y₂] X₃)`. -/
 def pullbackPullbackRightIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
     IsLimit (PullbackCone.mk l₁' l₂' (show l₁' ≫ g₂ = l₂' ≫ g₃ from pullback.lift_snd _ _ _)) :=
@@ -2466,7 +3409,9 @@ def pullbackPullbackRightIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
     rw [pullback.lift_fst]
   · exact pullback.condition.symm
 #align category_theory.limits.pullback_pullback_right_is_pullback CategoryTheory.Limits.pullbackPullbackRightIsPullback
+-/
 
+#print CategoryTheory.Limits.pullbackAssocSymmIsPullback /-
 /-- `X₁ ×[Y₁] (X₂ ×[Y₂] X₃)` is the pullback `(X₁ ×[Y₁] X₂) ×[Y₂] X₃`. -/
 def pullbackAssocSymmIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
     IsLimit
@@ -2478,13 +3423,17 @@ def pullbackAssocSymmIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
   exact pullback_is_pullback f₃ f₄
   apply pullback_pullback_right_is_pullback
 #align category_theory.limits.pullback_assoc_symm_is_pullback CategoryTheory.Limits.pullbackAssocSymmIsPullback
+-/
 
+#print CategoryTheory.Limits.hasPullback_assoc_symm /-
 theorem hasPullback_assoc_symm [HasPullback f₁ (g₃ ≫ f₂)] : HasPullback (g₂ ≫ f₃) f₄ :=
   ⟨⟨⟨_, pullbackAssocSymmIsPullback f₁ f₂ f₃ f₄⟩⟩⟩
 #align category_theory.limits.has_pullback_assoc_symm CategoryTheory.Limits.hasPullback_assoc_symm
+-/
 
 variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ (g₃ ≫ f₂)]
 
+#print CategoryTheory.Limits.pullbackAssoc /-
 /-- The canonical isomorphism `(X₁ ×[Y₁] X₂) ×[Y₂] X₃ ≅ X₁ ×[Y₁] (X₂ ×[Y₂] X₃)`. -/
 noncomputable def pullbackAssoc :
     pullback (pullback.snd ≫ f₃ : pullback f₁ f₂ ⟶ _) f₄ ≅
@@ -2492,7 +3441,9 @@ noncomputable def pullbackAssoc :
   (pullbackPullbackLeftIsPullback f₁ f₂ f₃ f₄).conePointUniqueUpToIso
     (pullbackPullbackRightIsPullback f₁ f₂ f₃ f₄)
 #align category_theory.limits.pullback_assoc CategoryTheory.Limits.pullbackAssoc
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_inv_fst_fst /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_inv_fst_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.fst = pullback.fst :=
@@ -2503,13 +3454,17 @@ theorem pullbackAssoc_inv_fst_fst :
   exact is_limit.cone_point_unique_up_to_iso_inv_comp _ _ walking_cospan.left
   exact pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_assoc_inv_fst_fst CategoryTheory.Limits.pullbackAssoc_inv_fst_fst
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_hom_fst /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_hom_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.fst = pullback.fst ≫ pullback.fst := by
   rw [← iso.eq_inv_comp, pullback_assoc_inv_fst_fst]
 #align category_theory.limits.pullback_assoc_hom_fst CategoryTheory.Limits.pullbackAssoc_hom_fst
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_hom_snd_fst /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_hom_snd_fst :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd :=
@@ -2520,7 +3475,9 @@ theorem pullbackAssoc_hom_snd_fst :
   exact is_limit.cone_point_unique_up_to_iso_hom_comp _ _ walking_cospan.right
   exact pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_assoc_hom_snd_fst CategoryTheory.Limits.pullbackAssoc_hom_snd_fst
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_hom_snd_snd /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_hom_snd_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).Hom ≫ pullback.snd ≫ pullback.snd = pullback.snd :=
@@ -2531,18 +3488,23 @@ theorem pullbackAssoc_hom_snd_snd :
   exact is_limit.cone_point_unique_up_to_iso_hom_comp _ _ walking_cospan.right
   exact pullback.lift_snd _ _ _
 #align category_theory.limits.pullback_assoc_hom_snd_snd CategoryTheory.Limits.pullbackAssoc_hom_snd_snd
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_inv_fst_snd /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_inv_fst_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst :=
   by rw [iso.inv_comp_eq, pullback_assoc_hom_snd_fst]
 #align category_theory.limits.pullback_assoc_inv_fst_snd CategoryTheory.Limits.pullbackAssoc_inv_fst_snd
+-/
 
+#print CategoryTheory.Limits.pullbackAssoc_inv_snd /-
 @[simp, reassoc.1]
 theorem pullbackAssoc_inv_snd :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.snd = pullback.snd ≫ pullback.snd := by
   rw [iso.inv_comp_eq, pullback_assoc_hom_snd_snd]
 #align category_theory.limits.pullback_assoc_inv_snd CategoryTheory.Limits.pullbackAssoc_inv_snd
+-/
 
 end PullbackAssoc
 
@@ -2632,6 +3594,7 @@ local notation "l₂'" =>
       ((Category.assoc _ _ _).symm.trans pushout.condition) :
     Y₂ ⟶ W')
 
+#print CategoryTheory.Limits.pushoutPushoutLeftIsPushout /-
 /-- `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃` is the pushout `(X₁ ⨿[Z₁] X₂) ×[X₂] (X₂ ⨿[Z₂] X₃)`. -/
 def pushoutPushoutLeftIsPushout [HasPushout (g₃ ≫ f₂) g₄] :
     IsColimit
@@ -2646,7 +3609,9 @@ def pushoutPushoutLeftIsPushout [HasPushout (g₃ ≫ f₂) g₄] :
     exact pushout.inr_desc _ _ _
   · exact pushout.condition.symm
 #align category_theory.limits.pushout_pushout_left_is_pushout CategoryTheory.Limits.pushoutPushoutLeftIsPushout
+-/
 
+#print CategoryTheory.Limits.pushoutAssocIsPushout /-
 /-- `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃` is the pushout `X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)`. -/
 def pushoutAssocIsPushout [HasPushout (g₃ ≫ f₂) g₄] :
     IsColimit
@@ -2658,11 +3623,15 @@ def pushoutAssocIsPushout [HasPushout (g₃ ≫ f₂) g₄] :
   · apply pushout_pushout_left_is_pushout
   · exact pushout_is_pushout _ _
 #align category_theory.limits.pushout_assoc_is_pushout CategoryTheory.Limits.pushoutAssocIsPushout
+-/
 
+#print CategoryTheory.Limits.hasPushout_assoc /-
 theorem hasPushout_assoc [HasPushout (g₃ ≫ f₂) g₄] : HasPushout g₁ (g₂ ≫ f₃) :=
   ⟨⟨⟨_, pushoutAssocIsPushout g₁ g₂ g₃ g₄⟩⟩⟩
 #align category_theory.limits.has_pushout_assoc CategoryTheory.Limits.hasPushout_assoc
+-/
 
+#print CategoryTheory.Limits.pushoutPushoutRightIsPushout /-
 /-- `X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)` is the pushout `(X₁ ⨿[Z₁] X₂) ×[X₂] (X₂ ⨿[Z₂] X₃)`. -/
 def pushoutPushoutRightIsPushout [HasPushout g₁ (g₂ ≫ f₃)] :
     IsColimit (PushoutCocone.mk l₁ l₂ (show f₂ ≫ l₁ = f₃ ≫ l₂ from pushout.inr_desc _ _ _)) :=
@@ -2672,7 +3641,9 @@ def pushoutPushoutRightIsPushout [HasPushout g₁ (g₂ ≫ f₃)] :
   · convert pushout_is_pushout g₁ (g₂ ≫ f₃)
     rw [pushout.inl_desc]
 #align category_theory.limits.pushout_pushout_right_is_pushout CategoryTheory.Limits.pushoutPushoutRightIsPushout
+-/
 
+#print CategoryTheory.Limits.pushoutAssocSymmIsPushout /-
 /-- `X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)` is the pushout `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃`. -/
 def pushoutAssocSymmIsPushout [HasPushout g₁ (g₂ ≫ f₃)] :
     IsColimit
@@ -2689,13 +3660,17 @@ def pushoutAssocSymmIsPushout [HasPushout g₁ (g₂ ≫ f₃)] :
   · exact pushout.condition.symm
   · exact (pushout.inr_desc _ _ _).symm
 #align category_theory.limits.pushout_assoc_symm_is_pushout CategoryTheory.Limits.pushoutAssocSymmIsPushout
+-/
 
+#print CategoryTheory.Limits.hasPushout_assoc_symm /-
 theorem hasPushout_assoc_symm [HasPushout g₁ (g₂ ≫ f₃)] : HasPushout (g₃ ≫ f₂) g₄ :=
   ⟨⟨⟨_, pushoutAssocSymmIsPushout g₁ g₂ g₃ g₄⟩⟩⟩
 #align category_theory.limits.has_pushout_assoc_symm CategoryTheory.Limits.hasPushout_assoc_symm
+-/
 
 variable [HasPushout (g₃ ≫ f₂) g₄] [HasPushout g₁ (g₂ ≫ f₃)]
 
+#print CategoryTheory.Limits.pushoutAssoc /-
 /-- The canonical isomorphism `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃ ≅ X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)`. -/
 noncomputable def pushoutAssoc :
     pushout (g₃ ≫ pushout.inr : _ ⟶ pushout g₁ g₂) g₄ ≅
@@ -2703,7 +3678,9 @@ noncomputable def pushoutAssoc :
   (pushoutPushoutLeftIsPushout g₁ g₂ g₃ g₄).coconePointUniqueUpToIso
     (pushoutPushoutRightIsPushout g₁ g₂ g₃ g₄)
 #align category_theory.limits.pushout_assoc CategoryTheory.Limits.pushoutAssoc
+-/
 
+#print CategoryTheory.Limits.inl_inl_pushoutAssoc_hom /-
 @[simp, reassoc.1]
 theorem inl_inl_pushoutAssoc_hom :
     pushout.inl ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inl :=
@@ -2715,7 +3692,9 @@ theorem inl_inl_pushoutAssoc_hom :
         walking_cospan.left
   · exact pushout.inl_desc _ _ _
 #align category_theory.limits.inl_inl_pushout_assoc_hom CategoryTheory.Limits.inl_inl_pushoutAssoc_hom
+-/
 
+#print CategoryTheory.Limits.inr_inl_pushoutAssoc_hom /-
 @[simp, reassoc.1]
 theorem inr_inl_pushoutAssoc_hom :
     pushout.inr ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inl ≫ pushout.inr :=
@@ -2727,7 +3706,9 @@ theorem inr_inl_pushoutAssoc_hom :
         walking_cospan.left
   · exact pushout.inr_desc _ _ _
 #align category_theory.limits.inr_inl_pushout_assoc_hom CategoryTheory.Limits.inr_inl_pushoutAssoc_hom
+-/
 
+#print CategoryTheory.Limits.inr_inr_pushoutAssoc_inv /-
 @[simp, reassoc.1]
 theorem inr_inr_pushoutAssoc_inv :
     pushout.inr ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr :=
@@ -2739,29 +3720,37 @@ theorem inr_inr_pushoutAssoc_inv :
         (pushout_pushout_right_is_pushout g₁ g₂ g₃ g₄) walking_cospan.right
   · exact pushout.inr_desc _ _ _
 #align category_theory.limits.inr_inr_pushout_assoc_inv CategoryTheory.Limits.inr_inr_pushoutAssoc_inv
+-/
 
+#print CategoryTheory.Limits.inl_pushoutAssoc_inv /-
 @[simp, reassoc.1]
 theorem inl_pushoutAssoc_inv :
     pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inl ≫ pushout.inl := by
   rw [iso.comp_inv_eq, category.assoc, inl_inl_pushout_assoc_hom]
 #align category_theory.limits.inl_pushout_assoc_inv CategoryTheory.Limits.inl_pushoutAssoc_inv
+-/
 
+#print CategoryTheory.Limits.inl_inr_pushoutAssoc_inv /-
 @[simp, reassoc.1]
 theorem inl_inr_pushoutAssoc_inv :
     pushout.inl ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr ≫ pushout.inl := by
   rw [← category.assoc, iso.comp_inv_eq, category.assoc, inr_inl_pushout_assoc_hom]
 #align category_theory.limits.inl_inr_pushout_assoc_inv CategoryTheory.Limits.inl_inr_pushoutAssoc_inv
+-/
 
+#print CategoryTheory.Limits.inr_pushoutAssoc_hom /-
 @[simp, reassoc.1]
 theorem inr_pushoutAssoc_hom :
     pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).Hom = pushout.inr ≫ pushout.inr := by
   rw [← iso.eq_comp_inv, category.assoc, inr_inr_pushout_assoc_inv]
 #align category_theory.limits.inr_pushout_assoc_hom CategoryTheory.Limits.inr_pushoutAssoc_hom
+-/
 
 end PushoutAssoc
 
 variable (C)
 
+#print CategoryTheory.Limits.HasPullbacks /-
 /-- `has_pullbacks` represents a choice of pullback for every pair of morphisms
 
 See <https://stacks.math.columbia.edu/tag/001W>
@@ -2769,36 +3758,56 @@ See <https://stacks.math.columbia.edu/tag/001W>
 abbrev HasPullbacks :=
   HasLimitsOfShape WalkingCospan C
 #align category_theory.limits.has_pullbacks CategoryTheory.Limits.HasPullbacks
+-/
 
+#print CategoryTheory.Limits.HasPushouts /-
 /-- `has_pushouts` represents a choice of pushout for every pair of morphisms -/
 abbrev HasPushouts :=
   HasColimitsOfShape WalkingSpan C
 #align category_theory.limits.has_pushouts CategoryTheory.Limits.HasPushouts
+-/
 
+#print CategoryTheory.Limits.hasPullbacks_of_hasLimit_cospan /-
 /-- If `C` has all limits of diagrams `cospan f g`, then it has all pullbacks -/
 theorem hasPullbacks_of_hasLimit_cospan
     [∀ {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z}, HasLimit (cospan f g)] : HasPullbacks C :=
   { HasLimit := fun F => hasLimitOfIso (diagramIsoCospan F).symm }
 #align category_theory.limits.has_pullbacks_of_has_limit_cospan CategoryTheory.Limits.hasPullbacks_of_hasLimit_cospan
+-/
 
+#print CategoryTheory.Limits.hasPushouts_of_hasColimit_span /-
 /-- If `C` has all colimits of diagrams `span f g`, then it has all pushouts -/
 theorem hasPushouts_of_hasColimit_span
     [∀ {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z}, HasColimit (span f g)] : HasPushouts C :=
   { HasColimit := fun F => hasColimitOfIso (diagramIsoSpan F) }
 #align category_theory.limits.has_pushouts_of_has_colimit_span CategoryTheory.Limits.hasPushouts_of_hasColimit_span
+-/
 
+/- warning: category_theory.limits.walking_span_op_equiv -> CategoryTheory.Limits.walkingSpanOpEquiv is a dubious translation:
+lean 3 declaration is
+  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingSpan) (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)
+but is expected to have type
+  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingSpan) CategoryTheory.Limits.WalkingCospan (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_span_op_equiv CategoryTheory.Limits.walkingSpanOpEquivₓ'. -/
 /-- The duality equivalence `walking_spanᵒᵖ ≌ walking_cospan` -/
 @[simps]
 def walkingSpanOpEquiv : WalkingSpanᵒᵖ ≌ WalkingCospan :=
   widePushoutShapeOpEquiv _
 #align category_theory.limits.walking_span_op_equiv CategoryTheory.Limits.walkingSpanOpEquiv
 
+/- warning: category_theory.limits.walking_cospan_op_equiv -> CategoryTheory.Limits.walkingCospanOpEquiv is a dubious translation:
+lean 3 declaration is
+  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingCospan) (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)
+but is expected to have type
+  CategoryTheory.Equivalence.{0, 0, 0, 0} (Opposite.{1} CategoryTheory.Limits.WalkingCospan) CategoryTheory.Limits.WalkingSpan (CategoryTheory.Category.opposite.{0, 0} CategoryTheory.Limits.WalkingCospan (CategoryTheory.Limits.WidePullbackShape.category.{0} CategoryTheory.Limits.WalkingPair)) (CategoryTheory.Limits.WidePushoutShape.category.{0} CategoryTheory.Limits.WalkingPair)
+Case conversion may be inaccurate. Consider using '#align category_theory.limits.walking_cospan_op_equiv CategoryTheory.Limits.walkingCospanOpEquivₓ'. -/
 /-- The duality equivalence `walking_cospanᵒᵖ ≌ walking_span` -/
 @[simps]
 def walkingCospanOpEquiv : WalkingCospanᵒᵖ ≌ WalkingSpan :=
   widePullbackShapeOpEquiv _
 #align category_theory.limits.walking_cospan_op_equiv CategoryTheory.Limits.walkingCospanOpEquiv
 
+#print CategoryTheory.Limits.hasPullbacks_of_hasWidePullbacks /-
 -- see Note [lower instance priority]
 /-- Having wide pullback at any universe level implies having binary pullbacks. -/
 instance (priority := 100) hasPullbacks_of_hasWidePullbacks [HasWidePullbacks.{w} C] :
@@ -2806,9 +3815,11 @@ instance (priority := 100) hasPullbacks_of_hasWidePullbacks [HasWidePullbacks.{w
   haveI := hasWidePullbacks_shrink.{0, w} C
   infer_instance
 #align category_theory.limits.has_pullbacks_of_has_wide_pullbacks CategoryTheory.Limits.hasPullbacks_of_hasWidePullbacks
+-/
 
 variable {C}
 
+#print CategoryTheory.Limits.baseChange /-
 /-- Given a morphism `f : X ⟶ Y`, we can take morphisms over `Y` to morphisms over `X` via
 pullbacks. This is right adjoint to `over.map` (TODO) -/
 @[simps (config :=
@@ -2819,6 +3830,7 @@ def baseChange [HasPullbacks C] {X Y : C} (f : X ⟶ Y) : Over Y ⥤ Over X
   obj g := Over.mk (pullback.snd : pullback g.Hom f ⟶ _)
   map g₁ g₂ i := Over.homMk (pullback.map _ _ _ _ i.left (𝟙 _) (𝟙 _) (by simp) (by simp)) (by simp)
 #align category_theory.limits.base_change CategoryTheory.Limits.baseChange
+-/
 
 end CategoryTheory.Limits
 
Diff
@@ -151,7 +151,7 @@ variable {C : Type u} [Category.{v} C]
 /-- To construct an isomorphism of cones over the walking cospan,
 it suffices to construct an isomorphism
 of the cone points and check it commutes with the legs to `left` and `right`. -/
-def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.x ≅ t.x)
+def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.pt)
     (w₁ : s.π.app WalkingCospan.left = i.Hom ≫ t.π.app WalkingCospan.left)
     (w₂ : s.π.app WalkingCospan.right = i.Hom ≫ t.π.app WalkingCospan.right) : s ≅ t :=
   by
@@ -171,7 +171,7 @@ def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.x ≅ t.x)
 /-- To construct an isomorphism of cocones over the walking span,
 it suffices to construct an isomorphism
 of the cocone points and check it commutes with the legs from `left` and `right`. -/
-def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.x ≅ t.x)
+def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
     (w₁ : s.ι.app WalkingCospan.left ≫ i.Hom = t.ι.app WalkingCospan.left)
     (w₂ : s.ι.app WalkingCospan.right ≫ i.Hom = t.ι.app WalkingCospan.right) : s ≅ t :=
   by
@@ -574,12 +574,12 @@ namespace PullbackCone
 variable {f : X ⟶ Z} {g : Y ⟶ Z}
 
 /-- The first projection of a pullback cone. -/
-abbrev fst (t : PullbackCone f g) : t.x ⟶ X :=
+abbrev fst (t : PullbackCone f g) : t.pt ⟶ X :=
   t.π.app WalkingCospan.left
 #align category_theory.limits.pullback_cone.fst CategoryTheory.Limits.PullbackCone.fst
 
 /-- The second projection of a pullback cone. -/
-abbrev snd (t : PullbackCone f g) : t.x ⟶ Y :=
+abbrev snd (t : PullbackCone f g) : t.pt ⟶ Y :=
   t.π.app WalkingCospan.right
 #align category_theory.limits.pullback_cone.snd CategoryTheory.Limits.PullbackCone.snd
 
@@ -602,12 +602,12 @@ theorem condition_one (t : PullbackCone f g) : t.π.app WalkingCospan.one = t.fs
 
 /-- This is a slightly more convenient method to verify that a pullback cone is a limit cone. It
     only asks for a proof of facts that carry any mathematical content -/
-def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.x ⟶ t.x)
+def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.pt ⟶ t.pt)
     (fac_left : ∀ s : PullbackCone f g, lift s ≫ t.fst = s.fst)
     (fac_right : ∀ s : PullbackCone f g, lift s ≫ t.snd = s.snd)
     (uniq :
-      ∀ (s : PullbackCone f g) (m : s.x ⟶ t.x) (w : ∀ j : WalkingCospan, m ≫ t.π.app j = s.π.app j),
-        m = lift s) :
+      ∀ (s : PullbackCone f g) (m : s.pt ⟶ t.pt)
+        (w : ∀ j : WalkingCospan, m ≫ t.π.app j = s.π.app j), m = lift s) :
     IsLimit t :=
   { lift
     fac := fun s j =>
@@ -640,7 +640,7 @@ def isLimitAux' (t : PullbackCone f g)
 @[simps]
 def mk {W : C} (fst : W ⟶ X) (snd : W ⟶ Y) (eq : fst ≫ f = snd ≫ g) : PullbackCone f g
     where
-  x := W
+  pt := W
   π := { app := fun j => Option.casesOn j (fst ≫ f) fun j' => WalkingPair.casesOn j' fst snd }
 #align category_theory.limits.pullback_cone.mk CategoryTheory.Limits.PullbackCone.mk
 
@@ -681,14 +681,14 @@ theorem condition (t : PullbackCone f g) : fst t ≫ f = snd t ≫ g :=
 
 /-- To check whether a morphism is equalized by the maps of a pullback cone, it suffices to check
   it for `fst t` and `snd t` -/
-theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.x} (h₀ : k ≫ fst t = l ≫ fst t)
+theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ : k ≫ fst t = l ≫ fst t)
     (h₁ : k ≫ snd t = l ≫ snd t) : ∀ j : WalkingCospan, k ≫ t.π.app j = l ≫ t.π.app j
   | some walking_pair.left => h₀
   | some walking_pair.right => h₁
   | none => by rw [← t.w inl, reassoc_of h₀]
 #align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_ext
 
-theorem IsLimit.hom_ext {t : PullbackCone f g} (ht : IsLimit t) {W : C} {k l : W ⟶ t.x}
+theorem IsLimit.hom_ext {t : PullbackCone f g} (ht : IsLimit t) {W : C} {k l : W ⟶ t.pt}
     (h₀ : k ≫ fst t = l ≫ fst t) (h₁ : k ≫ snd t = l ≫ snd t) : k = l :=
   ht.hom_ext <| equalizer_ext _ h₀ h₁
 #align category_theory.limits.pullback_cone.is_limit.hom_ext CategoryTheory.Limits.PullbackCone.IsLimit.hom_ext
@@ -705,7 +705,7 @@ theorem mono_fst_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t)
 
 /-- To construct an isomorphism of pullback cones, it suffices to construct an isomorphism
 of the cone points and check it commutes with `fst` and `snd`. -/
-def ext {s t : PullbackCone f g} (i : s.x ≅ t.x) (w₁ : s.fst = i.Hom ≫ t.fst)
+def ext {s t : PullbackCone f g} (i : s.pt ≅ t.pt) (w₁ : s.fst = i.Hom ≫ t.fst)
     (w₂ : s.snd = i.Hom ≫ t.snd) : s ≅ t :=
   WalkingCospan.ext i w₁ w₂
 #align category_theory.limits.pullback_cone.ext CategoryTheory.Limits.PullbackCone.ext
@@ -714,7 +714,7 @@ def ext {s t : PullbackCone f g} (i : s.x ≅ t.x) (w₁ : s.fst = i.Hom ≫ t.f
     `h ≫ f = k ≫ g`, then we have `l : W ⟶ t.X` satisfying `l ≫ fst t = h` and `l ≫ snd t = k`.
     -/
 def IsLimit.lift' {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X) (k : W ⟶ Y)
-    (w : h ≫ f = k ≫ g) : { l : W ⟶ t.x // l ≫ fst t = h ∧ l ≫ snd t = k } :=
+    (w : h ≫ f = k ≫ g) : { l : W ⟶ t.pt // l ≫ fst t = h ∧ l ≫ snd t = k } :=
   ⟨ht.lift <| PullbackCone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
 #align category_theory.limits.pullback_cone.is_limit.lift' CategoryTheory.Limits.PullbackCone.IsLimit.lift'
 
@@ -722,11 +722,11 @@ def IsLimit.lift' {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X)
 `pullback_cone.mk` is a limit cone.
 -/
 def IsLimit.mk {W : C} {fst : W ⟶ X} {snd : W ⟶ Y} (eq : fst ≫ f = snd ≫ g)
-    (lift : ∀ s : PullbackCone f g, s.x ⟶ W)
+    (lift : ∀ s : PullbackCone f g, s.pt ⟶ W)
     (fac_left : ∀ s : PullbackCone f g, lift s ≫ fst = s.fst)
     (fac_right : ∀ s : PullbackCone f g, lift s ≫ snd = s.snd)
     (uniq :
-      ∀ (s : PullbackCone f g) (m : s.x ⟶ W) (w_fst : m ≫ fst = s.fst) (w_snd : m ≫ snd = s.snd),
+      ∀ (s : PullbackCone f g) (m : s.pt ⟶ W) (w_fst : m ≫ fst = s.fst) (w_snd : m ≫ snd = s.snd),
         m = lift s) :
     IsLimit (mk fst snd Eq) :=
   isLimitAux _ lift fac_left fac_right fun s m w =>
@@ -820,12 +820,12 @@ namespace PushoutCocone
 variable {f : X ⟶ Y} {g : X ⟶ Z}
 
 /-- The first inclusion of a pushout cocone. -/
-abbrev inl (t : PushoutCocone f g) : Y ⟶ t.x :=
+abbrev inl (t : PushoutCocone f g) : Y ⟶ t.pt :=
   t.ι.app WalkingSpan.left
 #align category_theory.limits.pushout_cocone.inl CategoryTheory.Limits.PushoutCocone.inl
 
 /-- The second inclusion of a pushout cocone. -/
-abbrev inr (t : PushoutCocone f g) : Z ⟶ t.x :=
+abbrev inr (t : PushoutCocone f g) : Z ⟶ t.pt :=
   t.ι.app WalkingSpan.right
 #align category_theory.limits.pushout_cocone.inr CategoryTheory.Limits.PushoutCocone.inr
 
@@ -848,12 +848,12 @@ theorem condition_zero (t : PushoutCocone f g) : t.ι.app WalkingSpan.zero = f 
 
 /-- This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone.
     It only asks for a proof of facts that carry any mathematical content -/
-def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.x ⟶ s.x)
+def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.pt ⟶ s.pt)
     (fac_left : ∀ s : PushoutCocone f g, t.inl ≫ desc s = s.inl)
     (fac_right : ∀ s : PushoutCocone f g, t.inr ≫ desc s = s.inr)
     (uniq :
-      ∀ (s : PushoutCocone f g) (m : t.x ⟶ s.x) (w : ∀ j : WalkingSpan, t.ι.app j ≫ m = s.ι.app j),
-        m = desc s) :
+      ∀ (s : PushoutCocone f g) (m : t.pt ⟶ s.pt)
+        (w : ∀ j : WalkingSpan, t.ι.app j ≫ m = s.ι.app j), m = desc s) :
     IsColimit t :=
   { desc
     fac := fun s j =>
@@ -881,7 +881,7 @@ def isColimitAux' (t : PushoutCocone f g)
 @[simps]
 def mk {W : C} (inl : Y ⟶ W) (inr : Z ⟶ W) (eq : f ≫ inl = g ≫ inr) : PushoutCocone f g
     where
-  x := W
+  pt := W
   ι := { app := fun j => Option.casesOn j (f ≫ inl) fun j' => WalkingPair.casesOn j' inl inr }
 #align category_theory.limits.pushout_cocone.mk CategoryTheory.Limits.PushoutCocone.mk
 
@@ -922,14 +922,15 @@ theorem condition (t : PushoutCocone f g) : f ≫ inl t = g ≫ inr t :=
 
 /-- To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check
   it for `inl t` and `inr t` -/
-theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.x ⟶ W} (h₀ : inl t ≫ k = inl t ≫ l)
-    (h₁ : inr t ≫ k = inr t ≫ l) : ∀ j : WalkingSpan, t.ι.app j ≫ k = t.ι.app j ≫ l
+theorem coequalizer_ext (t : PushoutCocone f g) {W : C} {k l : t.pt ⟶ W}
+    (h₀ : inl t ≫ k = inl t ≫ l) (h₁ : inr t ≫ k = inr t ≫ l) :
+    ∀ j : WalkingSpan, t.ι.app j ≫ k = t.ι.app j ≫ l
   | some walking_pair.left => h₀
   | some walking_pair.right => h₁
   | none => by rw [← t.w fst, category.assoc, category.assoc, h₀]
 #align category_theory.limits.pushout_cocone.coequalizer_ext CategoryTheory.Limits.PushoutCocone.coequalizer_ext
 
-theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k l : t.x ⟶ W}
+theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k l : t.pt ⟶ W}
     (h₀ : inl t ≫ k = inl t ≫ l) (h₁ : inr t ≫ k = inr t ≫ l) : k = l :=
   ht.hom_ext <| coequalizer_ext _ h₀ h₁
 #align category_theory.limits.pushout_cocone.is_colimit.hom_ext CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext
@@ -938,7 +939,7 @@ theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k
     morphisms satisfying `f ≫ h = g ≫ k`, then we have a factorization `l : t.X ⟶ W` such that
     `inl t ≫ l = h` and `inr t ≫ l = k`. -/
 def IsColimit.desc' {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y ⟶ W) (k : Z ⟶ W)
-    (w : f ≫ h = g ≫ k) : { l : t.x ⟶ W // inl t ≫ l = h ∧ inr t ≫ l = k } :=
+    (w : f ≫ h = g ≫ k) : { l : t.pt ⟶ W // inl t ≫ l = h ∧ inr t ≫ l = k } :=
   ⟨ht.desc <| PushoutCocone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
 #align category_theory.limits.pushout_cocone.is_colimit.desc' CategoryTheory.Limits.PushoutCocone.IsColimit.desc'
 
@@ -954,7 +955,7 @@ theorem epi_inl_of_is_pushout_of_epi {t : PushoutCocone f g} (ht : IsColimit t)
 
 /-- To construct an isomorphism of pushout cocones, it suffices to construct an isomorphism
 of the cocone points and check it commutes with `inl` and `inr`. -/
-def ext {s t : PushoutCocone f g} (i : s.x ≅ t.x) (w₁ : s.inl ≫ i.Hom = t.inl)
+def ext {s t : PushoutCocone f g} (i : s.pt ≅ t.pt) (w₁ : s.inl ≫ i.Hom = t.inl)
     (w₂ : s.inr ≫ i.Hom = t.inr) : s ≅ t :=
   WalkingSpan.ext i w₁ w₂
 #align category_theory.limits.pushout_cocone.ext CategoryTheory.Limits.PushoutCocone.ext
@@ -963,11 +964,11 @@ def ext {s t : PushoutCocone f g} (i : s.x ≅ t.x) (w₁ : s.inl ≫ i.Hom = t.
 `pushout_cocone.mk` is a colimit cocone.
 -/
 def IsColimit.mk {W : C} {inl : Y ⟶ W} {inr : Z ⟶ W} (eq : f ≫ inl = g ≫ inr)
-    (desc : ∀ s : PushoutCocone f g, W ⟶ s.x)
+    (desc : ∀ s : PushoutCocone f g, W ⟶ s.pt)
     (fac_left : ∀ s : PushoutCocone f g, inl ≫ desc s = s.inl)
     (fac_right : ∀ s : PushoutCocone f g, inr ≫ desc s = s.inr)
     (uniq :
-      ∀ (s : PushoutCocone f g) (m : W ⟶ s.x) (w_inl : inl ≫ m = s.inl) (w_inr : inr ≫ m = s.inr),
+      ∀ (s : PushoutCocone f g) (m : W ⟶ s.pt) (w_inl : inl ≫ m = s.inl) (w_inr : inr ≫ m = s.inr),
         m = desc s) :
     IsColimit (mk inl inr Eq) :=
   isColimitAux _ desc fac_left fac_right fun s m w =>
@@ -1062,7 +1063,7 @@ end PushoutCocone
 @[simps]
 def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl) (F.map inr)) : Cone F
     where
-  x := t.x
+  pt := t.pt
   π := t.π ≫ (diagramIsoCospan F).inv
 #align category_theory.limits.cone.of_pullback_cone CategoryTheory.Limits.Cone.ofPullbackCone
 
@@ -1076,7 +1077,7 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
 @[simps]
 def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst) (F.map snd)) :
     Cocone F where
-  x := t.x
+  pt := t.pt
   ι := (diagramIsoSpan F).Hom ≫ t.ι
 #align category_theory.limits.cocone.of_pushout_cocone CategoryTheory.Limits.Cocone.ofPushoutCocone
 
@@ -1085,7 +1086,7 @@ def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst
 @[simps]
 def PullbackCone.ofCone {F : WalkingCospan ⥤ C} (t : Cone F) : PullbackCone (F.map inl) (F.map inr)
     where
-  x := t.x
+  pt := t.pt
   π := t.π ≫ (diagramIsoCospan F).Hom
 #align category_theory.limits.pullback_cone.of_cone CategoryTheory.Limits.PullbackCone.ofCone
 
@@ -1106,8 +1107,9 @@ def PullbackCone.isoMk {F : WalkingCospan ⥤ C} (t : Cone F) :
     and a cocone on `F`, we get a pushout cocone on `F.map fst` and `F.map snd`. -/
 @[simps]
 def PushoutCocone.ofCocone {F : WalkingSpan ⥤ C} (t : Cocone F) :
-    PushoutCocone (F.map fst) (F.map snd) where
-  x := t.x
+    PushoutCocone (F.map fst) (F.map snd)
+    where
+  pt := t.pt
   ι := (diagramIsoSpan F).inv ≫ t.ι
 #align category_theory.limits.pushout_cocone.of_cocone CategoryTheory.Limits.PushoutCocone.ofCocone
 
@@ -1184,25 +1186,25 @@ abbrev pushout.desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (
 
 @[simp]
 theorem PullbackCone.fst_colimit_cocone {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
-    [HasLimit (cospan f g)] : PullbackCone.fst (Limit.cone (cospan f g)) = pullback.fst :=
+    [HasLimit (cospan f g)] : PullbackCone.fst (limit.cone (cospan f g)) = pullback.fst :=
   rfl
 #align category_theory.limits.pullback_cone.fst_colimit_cocone CategoryTheory.Limits.PullbackCone.fst_colimit_cocone
 
 @[simp]
 theorem PullbackCone.snd_colimit_cocone {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
-    [HasLimit (cospan f g)] : PullbackCone.snd (Limit.cone (cospan f g)) = pullback.snd :=
+    [HasLimit (cospan f g)] : PullbackCone.snd (limit.cone (cospan f g)) = pullback.snd :=
   rfl
 #align category_theory.limits.pullback_cone.snd_colimit_cocone CategoryTheory.Limits.PullbackCone.snd_colimit_cocone
 
 @[simp]
 theorem PushoutCocone.inl_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
-    [HasColimit (span f g)] : PushoutCocone.inl (Colimit.cocone (span f g)) = pushout.inl :=
+    [HasColimit (span f g)] : PushoutCocone.inl (colimit.cocone (span f g)) = pushout.inl :=
   rfl
 #align category_theory.limits.pushout_cocone.inl_colimit_cocone CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone
 
 @[simp]
 theorem PushoutCocone.inr_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
-    [HasColimit (span f g)] : PushoutCocone.inr (Colimit.cocone (span f g)) = pushout.inr :=
+    [HasColimit (span f g)] : PushoutCocone.inr (colimit.cocone (span f g)) = pushout.inr :=
   rfl
 #align category_theory.limits.pushout_cocone.inr_colimit_cocone CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone
 
@@ -1652,9 +1654,9 @@ def pullbackConeOfLeftIso : PullbackCone f g :=
 #align category_theory.limits.pullback_cone_of_left_iso CategoryTheory.Limits.pullbackConeOfLeftIso
 
 @[simp]
-theorem pullbackConeOfLeftIso_x : (pullbackConeOfLeftIso f g).x = Y :=
+theorem pullbackConeOfLeftIso_pt : (pullbackConeOfLeftIso f g).pt = Y :=
   rfl
-#align category_theory.limits.pullback_cone_of_left_iso_X CategoryTheory.Limits.pullbackConeOfLeftIso_x
+#align category_theory.limits.pullback_cone_of_left_iso_X CategoryTheory.Limits.pullbackConeOfLeftIso_pt
 
 @[simp]
 theorem pullbackConeOfLeftIso_fst : (pullbackConeOfLeftIso f g).fst = g ≫ inv f :=
@@ -1737,9 +1739,9 @@ def pullbackConeOfRightIso : PullbackCone f g :=
 #align category_theory.limits.pullback_cone_of_right_iso CategoryTheory.Limits.pullbackConeOfRightIso
 
 @[simp]
-theorem pullbackConeOfRightIso_x : (pullbackConeOfRightIso f g).x = X :=
+theorem pullbackConeOfRightIso_pt : (pullbackConeOfRightIso f g).pt = X :=
   rfl
-#align category_theory.limits.pullback_cone_of_right_iso_X CategoryTheory.Limits.pullbackConeOfRightIso_x
+#align category_theory.limits.pullback_cone_of_right_iso_X CategoryTheory.Limits.pullbackConeOfRightIso_pt
 
 @[simp]
 theorem pullbackConeOfRightIso_fst : (pullbackConeOfRightIso f g).fst = 𝟙 _ :=
@@ -1832,9 +1834,9 @@ def pushoutCoconeOfLeftIso : PushoutCocone f g :=
 #align category_theory.limits.pushout_cocone_of_left_iso CategoryTheory.Limits.pushoutCoconeOfLeftIso
 
 @[simp]
-theorem pushoutCoconeOfLeftIso_x : (pushoutCoconeOfLeftIso f g).x = Z :=
+theorem pushoutCoconeOfLeftIso_pt : (pushoutCoconeOfLeftIso f g).pt = Z :=
   rfl
-#align category_theory.limits.pushout_cocone_of_left_iso_X CategoryTheory.Limits.pushoutCoconeOfLeftIso_x
+#align category_theory.limits.pushout_cocone_of_left_iso_X CategoryTheory.Limits.pushoutCoconeOfLeftIso_pt
 
 @[simp]
 theorem pushoutCoconeOfLeftIso_inl : (pushoutCoconeOfLeftIso f g).inl = inv f ≫ g :=
@@ -1917,9 +1919,9 @@ def pushoutCoconeOfRightIso : PushoutCocone f g :=
 #align category_theory.limits.pushout_cocone_of_right_iso CategoryTheory.Limits.pushoutCoconeOfRightIso
 
 @[simp]
-theorem pushoutCoconeOfRightIso_x : (pushoutCoconeOfRightIso f g).x = Y :=
+theorem pushoutCoconeOfRightIso_pt : (pushoutCoconeOfRightIso f g).pt = Y :=
   rfl
-#align category_theory.limits.pushout_cocone_of_right_iso_X CategoryTheory.Limits.pushoutCoconeOfRightIso_x
+#align category_theory.limits.pushout_cocone_of_right_iso_X CategoryTheory.Limits.pushoutCoconeOfRightIso_pt
 
 @[simp]
 theorem pushoutCoconeOfRightIso_inl : (pushoutCoconeOfRightIso f g).inl = 𝟙 _ :=
@@ -2776,13 +2778,13 @@ abbrev HasPushouts :=
 /-- If `C` has all limits of diagrams `cospan f g`, then it has all pullbacks -/
 theorem hasPullbacks_of_hasLimit_cospan
     [∀ {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z}, HasLimit (cospan f g)] : HasPullbacks C :=
-  { HasLimit := fun F => hasLimit_of_iso (diagramIsoCospan F).symm }
+  { HasLimit := fun F => hasLimitOfIso (diagramIsoCospan F).symm }
 #align category_theory.limits.has_pullbacks_of_has_limit_cospan CategoryTheory.Limits.hasPullbacks_of_hasLimit_cospan
 
 /-- If `C` has all colimits of diagrams `span f g`, then it has all pushouts -/
 theorem hasPushouts_of_hasColimit_span
     [∀ {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z}, HasColimit (span f g)] : HasPushouts C :=
-  { HasColimit := fun F => hasColimit_of_iso (diagramIsoSpan F) }
+  { HasColimit := fun F => hasColimitOfIso (diagramIsoSpan F) }
 #align category_theory.limits.has_pushouts_of_has_colimit_span CategoryTheory.Limits.hasPushouts_of_hasColimit_span
 
 /-- The duality equivalence `walking_spanᵒᵖ ≌ walking_cospan` -/
Diff
@@ -610,14 +610,14 @@ def isLimitAux (t : PullbackCone f g) (lift : ∀ s : PullbackCone f g, s.x ⟶
         m = lift s) :
     IsLimit t :=
   { lift
-    fac' := fun s j =>
+    fac := fun s j =>
       Option.casesOn j
         (by
           rw [← s.w inl, ← t.w inl, ← category.assoc]
           congr
           exact fac_left s)
         fun j' => WalkingPair.casesOn j' (fac_left s) (fac_right s)
-    uniq' := uniq }
+    uniq := uniq }
 #align category_theory.limits.pullback_cone.is_limit_aux CategoryTheory.Limits.PullbackCone.isLimitAux
 
 /-- This is another convenient method to verify that a pullback cone is a limit cone. It
@@ -856,10 +856,10 @@ def isColimitAux (t : PushoutCocone f g) (desc : ∀ s : PushoutCocone f g, t.x
         m = desc s) :
     IsColimit t :=
   { desc
-    fac' := fun s j =>
+    fac := fun s j =>
       Option.casesOn j (by simp [← s.w fst, ← t.w fst, fac_left s]) fun j' =>
         WalkingPair.casesOn j' (fac_left s) (fac_right s)
-    uniq' := uniq }
+    uniq := uniq }
 #align category_theory.limits.pushout_cocone.is_colimit_aux CategoryTheory.Limits.PushoutCocone.isColimitAux
 
 /-- This is another convenient method to verify that a pushout cocone is a colimit cocone. It
@@ -2776,13 +2776,13 @@ abbrev HasPushouts :=
 /-- If `C` has all limits of diagrams `cospan f g`, then it has all pullbacks -/
 theorem hasPullbacks_of_hasLimit_cospan
     [∀ {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z}, HasLimit (cospan f g)] : HasPullbacks C :=
-  { HasLimit := fun F => hasLimitOfIso (diagramIsoCospan F).symm }
+  { HasLimit := fun F => hasLimit_of_iso (diagramIsoCospan F).symm }
 #align category_theory.limits.has_pullbacks_of_has_limit_cospan CategoryTheory.Limits.hasPullbacks_of_hasLimit_cospan
 
 /-- If `C` has all colimits of diagrams `span f g`, then it has all pushouts -/
 theorem hasPushouts_of_hasColimit_span
     [∀ {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z}, HasColimit (span f g)] : HasPushouts C :=
-  { HasColimit := fun F => hasColimitOfIso (diagramIsoSpan F) }
+  { HasColimit := fun F => hasColimit_of_iso (diagramIsoSpan F) }
 #align category_theory.limits.has_pushouts_of_has_colimit_span CategoryTheory.Limits.hasPushouts_of_hasColimit_span
 
 /-- The duality equivalence `walking_spanᵒᵖ ≌ walking_cospan` -/

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -1962,7 +1962,9 @@ theorem fst_eq_snd_of_mono_eq [Mono f] : (pullback.fst : pullback f f ⟶ _) = p
 
 @[simp]
 theorem pullbackSymmetry_hom_of_mono_eq [Mono f] : (pullbackSymmetry f f).hom = 𝟙 _ := by
-  ext; simp [fst_eq_snd_of_mono_eq]; simp [fst_eq_snd_of_mono_eq]
+  ext
+  · simp [fst_eq_snd_of_mono_eq]
+  · simp [fst_eq_snd_of_mono_eq]
 #align category_theory.limits.pullback_symmetry_hom_of_mono_eq CategoryTheory.Limits.pullbackSymmetry_hom_of_mono_eq
 
 instance fst_iso_of_mono_eq [Mono f] : IsIso (pullback.fst : pullback f f ⟶ _) := by
@@ -2346,7 +2348,7 @@ local notation "l₂'" => (pullback.snd : W' ⟶ Z₂)
 def pullbackPullbackLeftIsPullback [HasPullback (g₂ ≫ f₃) f₄] : IsLimit (PullbackCone.mk l₁ l₂
     (show l₁ ≫ g₂ = l₂ ≫ g₃ from (pullback.lift_fst _ _ _).symm)) := by
   apply leftSquareIsPullback
-  exact pullbackIsPullback f₃ f₄
+  · exact pullbackIsPullback f₃ f₄
   convert pullbackIsPullback (g₂ ≫ f₃) f₄
   rw [pullback.lift_snd]
 #align category_theory.limits.pullback_pullback_left_is_pullback CategoryTheory.Limits.pullbackPullbackLeftIsPullback
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -507,7 +507,7 @@ end
 variable {W X Y Z : C}
 
 /-- A pullback cone is just a cone on the cospan formed by two morphisms `f : X ⟶ Z` and
-    `g : Y ⟶ Z`.-/
+    `g : Y ⟶ Z`. -/
 abbrev PullbackCone (f : X ⟶ Z) (g : Y ⟶ Z) :=
   Cone (cospan f g)
 #align category_theory.limits.pullback_cone CategoryTheory.Limits.PullbackCone
@@ -780,7 +780,7 @@ def isLimitOfCompMono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i] (s : Pu
 end PullbackCone
 
 /-- A pushout cocone is just a cocone on the span formed by two morphisms `f : X ⟶ Y` and
-    `g : X ⟶ Z`.-/
+    `g : X ⟶ Z`. -/
 abbrev PushoutCocone (f : X ⟶ Y) (g : X ⟶ Z) :=
   Cocone (span f g)
 #align category_theory.limits.pushout_cocone CategoryTheory.Limits.PushoutCocone
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -2016,9 +2016,7 @@ end
 section PasteLemma
 
 variable {X₁ X₂ X₃ Y₁ Y₂ Y₃ : C} (f₁ : X₁ ⟶ X₂) (f₂ : X₂ ⟶ X₃) (g₁ : Y₁ ⟶ Y₂) (g₂ : Y₂ ⟶ Y₃)
-
 variable (i₁ : X₁ ⟶ Y₁) (i₂ : X₂ ⟶ Y₂) (i₃ : X₃ ⟶ Y₃)
-
 variable (h₁ : i₁ ≫ g₁ = f₁ ≫ i₂) (h₂ : i₂ ≫ g₂ = f₂ ≫ i₃)
 
 /-- Given
@@ -2172,9 +2170,7 @@ end PasteLemma
 section
 
 variable (f : X ⟶ Z) (g : Y ⟶ Z) (f' : W ⟶ X)
-
 variable [HasPullback f g] [HasPullback f' (pullback.fst : pullback f g ⟶ _)]
-
 variable [HasPullback (f' ≫ f) g]
 
 /-- The canonical isomorphism `W ×[X] (X ×[Z] Y) ≅ W ×[Z] Y` -/
@@ -2223,9 +2219,7 @@ end
 section
 
 variable (f : X ⟶ Y) (g : X ⟶ Z) (g' : Z ⟶ W)
-
 variable [HasPushout f g] [HasPushout (pushout.inr : _ ⟶ pushout f g) g']
-
 variable [HasPushout f (g ≫ g')]
 
 /-- The canonical isomorphism `(Y ⨿[X] Z) ⨿[Z] W ≅ Y ×[X] W` -/
@@ -2316,7 +2310,6 @@ X₁ -  f₁ -> Y₁
 We will show that both `W` and `W'` are pullbacks over `g₁, g₂`, and thus we may construct a
 canonical isomorphism between them. -/
 variable {X₁ X₂ X₃ Y₁ Y₂ : C} (f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶ Y₁) (f₃ : X₂ ⟶ Y₂)
-
 variable (f₄ : X₃ ⟶ Y₂) [HasPullback f₁ f₂] [HasPullback f₃ f₄]
 
 local notation "Z₁" => pullback f₁ f₂
@@ -2515,7 +2508,6 @@ Y₁ - l₁' -> W'
 We will show that both `W` and `W'` are pushouts over `f₂, f₃`, and thus we may construct a
 canonical isomorphism between them. -/
 variable {X₁ X₂ X₃ Z₁ Z₂ : C} (g₁ : Z₁ ⟶ X₁) (g₂ : Z₁ ⟶ X₂) (g₃ : Z₂ ⟶ X₂)
-
 variable (g₄ : Z₂ ⟶ X₃) [HasPushout g₁ g₂] [HasPushout g₃ g₄]
 
 local notation "Y₁" => pushout g₁ g₂
chore: tidy various files (#11135)
Diff
@@ -1468,7 +1468,7 @@ variable (G : C ⥤ D)
 
 /-- The comparison morphism for the pullback of `f,g`.
 This is an isomorphism iff `G` preserves the pullback of `f,g`; see
-`CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean`
+`Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean`
 -/
 def pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] [HasPullback (G.map f) (G.map g)] :
     G.obj (pullback f g) ⟶ pullback (G.map f) (G.map g) :=
@@ -1500,7 +1500,7 @@ theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
 
 /-- The comparison morphism for the pushout of `f,g`.
 This is an isomorphism iff `G` preserves the pushout of `f,g`; see
-`CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean`
+`Mathlib/CategoryTheory/Limits/Preserves/Shapes/Pullbacks.lean`
 -/
 def pushoutComparison (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] [HasPushout (G.map f) (G.map g)] :
     pushout (G.map f) (G.map g) ⟶ G.obj (pushout f g) :=
@@ -2398,8 +2398,8 @@ def pullbackAssocSymmIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
         (show l₁' ≫ g₂ ≫ f₃ = (l₂' ≫ g₄) ≫ f₄ by
           rw [pullback.lift_snd_assoc, Category.assoc, Category.assoc, pullback.condition])) := by
   apply bigSquareIsPullback
-  exact pullbackIsPullback f₃ f₄
-  apply pullbackPullbackRightIsPullback
+  · exact pullbackIsPullback f₃ f₄
+  · apply pullbackPullbackRightIsPullback
 #align category_theory.limits.pullback_assoc_symm_is_pullback CategoryTheory.Limits.pullbackAssocSymmIsPullback
 
 theorem hasPullback_assoc_symm [HasPullback f₁ (g₃ ≫ f₂)] : HasPullback (g₂ ≫ f₃) f₄ :=
@@ -2424,10 +2424,10 @@ theorem pullbackAssoc_inv_fst_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
     [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.fst = pullback.fst := by
   trans l₁' ≫ pullback.fst
-  rw [← Category.assoc]
-  congr 1
-  exact IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.left
-  exact pullback.lift_fst _ _ _
+  · rw [← Category.assoc]
+    congr 1
+    exact IsLimit.conePointUniqueUpToIso_inv_comp _ _ WalkingCospan.left
+  · exact pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_assoc_inv_fst_fst CategoryTheory.Limits.pullbackAssoc_inv_fst_fst
 
 @[reassoc (attr := simp)]
@@ -2442,10 +2442,10 @@ theorem pullbackAssoc_hom_snd_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
     [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] : (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫
     pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd := by
   trans l₂ ≫ pullback.fst
-  rw [← Category.assoc]
-  congr 1
-  exact IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
-  exact pullback.lift_fst _ _ _
+  · rw [← Category.assoc]
+    congr 1
+    exact IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
+  · exact pullback.lift_fst _ _ _
 #align category_theory.limits.pullback_assoc_hom_snd_fst CategoryTheory.Limits.pullbackAssoc_hom_snd_fst
 
 @[reassoc (attr := simp)]
@@ -2453,10 +2453,10 @@ theorem pullbackAssoc_hom_snd_snd [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
     [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫ pullback.snd ≫ pullback.snd = pullback.snd := by
   trans l₂ ≫ pullback.snd
-  rw [← Category.assoc]
-  congr 1
-  exact IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
-  exact pullback.lift_snd _ _ _
+  · rw [← Category.assoc]
+    congr 1
+    exact IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingCospan.right
+  · exact pullback.lift_snd _ _ _
 #align category_theory.limits.pullback_assoc_hom_snd_snd CategoryTheory.Limits.pullbackAssoc_hom_snd_snd
 
 @[reassoc (attr := simp)]
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -647,7 +647,7 @@ def ext {s t : PullbackCone f g} (i : s.pt ≅ t.pt) (w₁ : s.fst = i.hom ≫ t
   WalkingCospan.ext i w₁ w₂
 #align category_theory.limits.pullback_cone.ext CategoryTheory.Limits.PullbackCone.ext
 
--- porting note: `IsLimit.lift` and the two following simp lemmas were introduced to ease the port
+-- Porting note: `IsLimit.lift` and the two following simp lemmas were introduced to ease the port
 /-- If `t` is a limit pullback cone over `f` and `g` and `h : W ⟶ X` and `k : W ⟶ Y` are such that
     `h ≫ f = k ≫ g`, then we get `l : W ⟶ t.pt`, which satisfies `l ≫ fst t = h`
     and `l ≫ snd t = k`, see `IsLimit.lift_fst` and `IsLimit.lift_snd`. -/
@@ -896,7 +896,7 @@ theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k
   ht.hom_ext <| coequalizer_ext _ h₀ h₁
 #align category_theory.limits.pushout_cocone.is_colimit.hom_ext CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext
 
--- porting note: `IsColimit.desc` and the two following simp lemmas were introduced to ease the port
+-- Porting note: `IsColimit.desc` and the two following simp lemmas were introduced to ease the port
 /-- If `t` is a colimit pushout cocone over `f` and `g` and `h : Y ⟶ W` and `k : Z ⟶ W` are
     morphisms satisfying `f ≫ h = g ≫ k`, then we have a factorization `l : t.pt ⟶ W` such that
     `inl t ≫ l = h` and `inr t ≫ l = k`, see `IsColimit.inl_desc` and `IsColimit.inr_desc`-/
style: reduce spacing variation in "porting note" comments (#10886)

In this pull request, I have systematically eliminated the leading whitespace preceding the colon (:) within all unlabelled or unclassified porting notes. This adjustment facilitates a more efficient review process for the remaining notes by ensuring no entries are overlooked due to formatting inconsistencies.

Diff
@@ -2406,7 +2406,7 @@ theorem hasPullback_assoc_symm [HasPullback f₁ (g₃ ≫ f₂)] : HasPullback
   ⟨⟨⟨_, pullbackAssocSymmIsPullback f₁ f₂ f₃ f₄⟩⟩⟩
 #align category_theory.limits.has_pullback_assoc_symm CategoryTheory.Limits.hasPullback_assoc_symm
 
-/- Porting note : these don't seem to be propagating change from
+/- Porting note: these don't seem to be propagating change from
 -- variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ (g₃ ≫ f₂)] -/
 variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)]
 
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -1189,38 +1189,38 @@ theorem PullbackCone.snd_colimit_cocone {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
     [HasLimit (cospan f g)] : PullbackCone.snd (limit.cone (cospan f g)) = pullback.snd := rfl
 #align category_theory.limits.pullback_cone.snd_colimit_cocone CategoryTheory.Limits.PullbackCone.snd_colimit_cocone
 
--- Porting note: simp can prove this; removed simp
+-- Porting note (#10618): simp can prove this; removed simp
 theorem PushoutCocone.inl_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
     [HasColimit (span f g)] : PushoutCocone.inl (colimit.cocone (span f g)) = pushout.inl := rfl
 #align category_theory.limits.pushout_cocone.inl_colimit_cocone CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone
 
--- Porting note: simp can prove this; removed simp
+-- Porting note (#10618): simp can prove this; removed simp
 theorem PushoutCocone.inr_colimit_cocone {X Y Z : C} (f : Z ⟶ X) (g : Z ⟶ Y)
     [HasColimit (span f g)] : PushoutCocone.inr (colimit.cocone (span f g)) = pushout.inr := rfl
 #align category_theory.limits.pushout_cocone.inr_colimit_cocone CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone
 
--- Porting note: simp can prove this and reassoced version; removed simp
+-- Porting note (#10618): simp can prove this and reassoced version; removed simp
 @[reassoc]
 theorem pullback.lift_fst {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.fst = h :=
   limit.lift_π _ _
 #align category_theory.limits.pullback.lift_fst CategoryTheory.Limits.pullback.lift_fst
 
--- Porting note: simp can prove this and reassoced version; removed simp
+-- Porting note (#10618): simp can prove this and reassoced version; removed simp
 @[reassoc]
 theorem pullback.lift_snd {W X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] (h : W ⟶ X)
     (k : W ⟶ Y) (w : h ≫ f = k ≫ g) : pullback.lift h k w ≫ pullback.snd = k :=
   limit.lift_π _ _
 #align category_theory.limits.pullback.lift_snd CategoryTheory.Limits.pullback.lift_snd
 
--- Porting note: simp can prove this and reassoced version; removed simp
+-- Porting note (#10618): simp can prove this and reassoced version; removed simp
 @[reassoc]
 theorem pushout.inl_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inl ≫ pushout.desc h k w = h :=
   colimit.ι_desc _ _
 #align category_theory.limits.pushout.inl_desc CategoryTheory.Limits.pushout.inl_desc
 
--- Porting note: simp can prove this and reassoced version; removed simp
+-- Porting note (#10618): simp can prove this and reassoced version; removed simp
 @[reassoc]
 theorem pushout.inr_desc {W X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] (h : Y ⟶ W)
     (k : Z ⟶ W) (w : f ≫ h = g ≫ k) : pushout.inr ≫ pushout.desc h k w = k :=
@@ -1653,7 +1653,7 @@ theorem pullbackConeOfLeftIso_fst : (pullbackConeOfLeftIso f g).fst = g ≫ inv
 theorem pullbackConeOfLeftIso_snd : (pullbackConeOfLeftIso f g).snd = 𝟙 _ := rfl
 #align category_theory.limits.pullback_cone_of_left_iso_snd CategoryTheory.Limits.pullbackConeOfLeftIso_snd
 
--- Porting note: simp can prove this; removed simp
+-- Porting note (#10618): simp can prove this; removed simp
 theorem pullbackConeOfLeftIso_π_app_none : (pullbackConeOfLeftIso f g).π.app none = g := by simp
 #align category_theory.limits.pullback_cone_of_left_iso_π_app_none CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none
 
@@ -1728,7 +1728,7 @@ theorem pullbackConeOfRightIso_fst : (pullbackConeOfRightIso f g).fst = 𝟙 _ :
 theorem pullbackConeOfRightIso_snd : (pullbackConeOfRightIso f g).snd = f ≫ inv g := rfl
 #align category_theory.limits.pullback_cone_of_right_iso_snd CategoryTheory.Limits.pullbackConeOfRightIso_snd
 
--- Porting note: simp can prove this; removed simps
+-- Porting note (#10618): simp can prove this; removed simps
 theorem pullbackConeOfRightIso_π_app_none : (pullbackConeOfRightIso f g).π.app none = f := by simp
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_none CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none
 
@@ -1817,7 +1817,7 @@ theorem pushoutCoconeOfLeftIso_inl : (pushoutCoconeOfLeftIso f g).inl = inv f 
 theorem pushoutCoconeOfLeftIso_inr : (pushoutCoconeOfLeftIso f g).inr = 𝟙 _ := rfl
 #align category_theory.limits.pushout_cocone_of_left_iso_inr CategoryTheory.Limits.pushoutCoconeOfLeftIso_inr
 
--- Porting note: simp can prove this; removed simp
+-- Porting note (#10618): simp can prove this; removed simp
 theorem pushoutCoconeOfLeftIso_ι_app_none : (pushoutCoconeOfLeftIso f g).ι.app none = g := by
   simp
 #align category_theory.limits.pushout_cocone_of_left_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none
@@ -1893,7 +1893,7 @@ theorem pushoutCoconeOfRightIso_inl : (pushoutCoconeOfRightIso f g).inl = 𝟙 _
 theorem pushoutCoconeOfRightIso_inr : (pushoutCoconeOfRightIso f g).inr = inv g ≫ f := rfl
 #align category_theory.limits.pushout_cocone_of_right_iso_inr CategoryTheory.Limits.pushoutCoconeOfRightIso_inr
 
--- Porting note: simp can prove this; removed simp
+-- Porting note (#10618): simp can prove this; removed simp
 theorem pushoutCoconeOfRightIso_ι_app_none : (pushoutCoconeOfRightIso f g).ι.app none = f := by
   simp
 #align category_theory.limits.pushout_cocone_of_right_iso_ι_app_none CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none
chore: remove useless include and omit porting notes (#10503)
Diff
@@ -2319,8 +2319,6 @@ variable {X₁ X₂ X₃ Y₁ Y₂ : C} (f₁ : X₁ ⟶ Y₁) (f₂ : X₂ ⟶
 
 variable (f₄ : X₃ ⟶ Y₂) [HasPullback f₁ f₂] [HasPullback f₃ f₄]
 
--- include f₁ f₂ f₃ f₄ Porting note: removed
-
 local notation "Z₁" => pullback f₁ f₂
 
 local notation "Z₂" => pullback f₃ f₄
@@ -2520,8 +2518,6 @@ variable {X₁ X₂ X₃ Z₁ Z₂ : C} (g₁ : Z₁ ⟶ X₁) (g₂ : Z₁ ⟶
 
 variable (g₄ : Z₂ ⟶ X₃) [HasPushout g₁ g₂] [HasPushout g₃ g₄]
 
--- include g₁ g₂ g₃ g₄ Porting note: removed
-
 local notation "Y₁" => pushout g₁ g₂
 
 local notation "Y₂" => pushout g₃ g₄
feat(CategoryTheory): characterization of epi/mono with limits (#9989)

In this PR, it is shown that monomorphisms can be characterized in terms of pullback squares. Future applications of this include the fact that if a family of functors reflects isomorphisms, it shall also reflect monomorphisms and epimorphisms (provided suitable limits/colimits exist).

Diff
@@ -686,17 +686,34 @@ def IsLimit.mk {W : C} {fst : W ⟶ X} {snd : W ⟶ Y} (eq : fst ≫ f = snd ≫
     uniq s m (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pullback_cone.is_limit.mk CategoryTheory.Limits.PullbackCone.IsLimit.mk
 
+section Flip
+
+variable (t : PullbackCone f g)
+
+/-- The pullback cone obtained by flipping `fst` and `snd`. -/
+def flip : PullbackCone g f := PullbackCone.mk _ _ t.condition.symm
+
+@[simp] lemma flip_pt : t.flip.pt = t.pt := rfl
+@[simp] lemma flip_fst : t.flip.fst = t.snd := rfl
+@[simp] lemma flip_snd : t.flip.snd = t.fst := rfl
+
+/-- Flipping a pullback cone twice gives an isomorphic cone. -/
+def flipFlipIso : t.flip.flip ≅ t := PullbackCone.ext (Iso.refl _) (by simp) (by simp)
+
+variable {t}
+
 /-- The flip of a pullback square is a pullback square. -/
-def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
-    (t : IsLimit (mk _ _ comm.symm)) : IsLimit (mk _ _ comm) :=
-  isLimitAux' _ fun s => by
-    refine'
-      ⟨(IsLimit.lift' t _ _ s.condition.symm).1, (IsLimit.lift' t _ _ _).2.2,
-        (IsLimit.lift' t _ _ _).2.1, fun m₁ m₂ => t.hom_ext _⟩
-    apply (mk k h _).equalizer_ext
-    · rwa [(IsLimit.lift' t _ _ _).2.1]
-    · rwa [(IsLimit.lift' t _ _ _).2.2]
-#align category_theory.limits.pullback_cone.flip_is_limit CategoryTheory.Limits.PullbackCone.flipIsLimit
+def flipIsLimit (ht : IsLimit t) : IsLimit t.flip :=
+  IsLimit.mk _ (fun s => ht.lift s.flip) (by simp) (by simp) (fun s m h₁ h₂ => by
+    apply IsLimit.hom_ext ht
+    all_goals aesop_cat)
+
+/-- A square is a pullback square if its flip is. -/
+def isLimitOfFlip (ht : IsLimit t.flip) : IsLimit t :=
+  IsLimit.ofIsoLimit (flipIsLimit ht) t.flipFlipIso
+#align category_theory.limits.pullback_cone.flip_is_limit CategoryTheory.Limits.PullbackCone.isLimitOfFlip
+
+end Flip
 
 /--
 The pullback cone `(𝟙 X, 𝟙 X)` for the pair `(f, f)` is a limit if `f` is a mono. The converse is
@@ -937,17 +954,34 @@ def IsColimit.mk {W : C} {inl : Y ⟶ W} {inr : Z ⟶ W} (eq : f ≫ inl = g ≫
     uniq s m (w WalkingCospan.left) (w WalkingCospan.right)
 #align category_theory.limits.pushout_cocone.is_colimit.mk CategoryTheory.Limits.PushoutCocone.IsColimit.mk
 
+section Flip
+
+variable (t : PushoutCocone f g)
+
+/-- The pushout cocone obtained by flipping `inl` and `inr`. -/
+def flip : PushoutCocone g f := PushoutCocone.mk _ _ t.condition.symm
+
+@[simp] lemma flip_pt : t.flip.pt = t.pt := rfl
+@[simp] lemma flip_inl : t.flip.inl = t.inr := rfl
+@[simp] lemma flip_inr : t.flip.inr = t.inl := rfl
+
+/-- Flipping a pushout cocone twice gives an isomorphic cocone. -/
+def flipFlipIso : t.flip.flip ≅ t := PushoutCocone.ext (Iso.refl _) (by simp) (by simp)
+
+variable {t}
+
 /-- The flip of a pushout square is a pushout square. -/
-def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
-    (t : IsColimit (mk _ _ comm.symm)) : IsColimit (mk _ _ comm) :=
-  isColimitAux' _ fun s => by
-    refine'
-      ⟨(IsColimit.desc' t _ _ s.condition.symm).1, (IsColimit.desc' t _ _ _).2.2,
-        (IsColimit.desc' t _ _ _).2.1, fun m₁ m₂ => t.hom_ext _⟩
-    apply (mk k h _).coequalizer_ext
-    · rwa [(IsColimit.desc' t _ _ _).2.1]
-    · rwa [(IsColimit.desc' t _ _ _).2.2]
-#align category_theory.limits.pushout_cocone.flip_is_colimit CategoryTheory.Limits.PushoutCocone.flipIsColimit
+def flipIsColimit (ht : IsColimit t) : IsColimit t.flip :=
+  IsColimit.mk _ (fun s => ht.desc s.flip) (by simp) (by simp) (fun s m h₁ h₂ => by
+    apply IsColimit.hom_ext ht
+    all_goals aesop_cat)
+
+/-- A square is a pushout square if its flip is. -/
+def isColimitOfFlip (ht : IsColimit t.flip) : IsColimit t :=
+  IsColimit.ofIsoColimit (flipIsColimit ht) t.flipFlipIso
+#align category_theory.limits.pushout_cocone.flip_is_colimit CategoryTheory.Limits.PushoutCocone.isColimitOfFlip
+
+end Flip
 
 /--
 The pushout cocone `(𝟙 X, 𝟙 X)` for the pair `(f, f)` is a colimit if `f` is an epi. The converse is
@@ -1504,8 +1538,7 @@ variable (f : X ⟶ Z) (g : Y ⟶ Z)
 
 /-- Making this a global instance would make the typeclass search go in an infinite loop. -/
 theorem hasPullback_symmetry [HasPullback f g] : HasPullback g f :=
-  ⟨⟨⟨PullbackCone.mk _ _ pullback.condition.symm,
-        PullbackCone.flipIsLimit (pullbackIsPullback _ _)⟩⟩⟩
+  ⟨⟨⟨_, PullbackCone.flipIsLimit (pullbackIsPullback f g)⟩⟩⟩
 #align category_theory.limits.has_pullback_symmetry CategoryTheory.Limits.hasPullback_symmetry
 
 attribute [local instance] hasPullback_symmetry
@@ -1513,9 +1546,7 @@ attribute [local instance] hasPullback_symmetry
 /-- The isomorphism `X ×[Z] Y ≅ Y ×[Z] X`. -/
 def pullbackSymmetry [HasPullback f g] : pullback f g ≅ pullback g f :=
   IsLimit.conePointUniqueUpToIso
-    (PullbackCone.flipIsLimit (pullbackIsPullback f g) :
-      IsLimit (PullbackCone.mk _ _ pullback.condition.symm))
-    (limit.isLimit _)
+    (PullbackCone.flipIsLimit (pullbackIsPullback f g)) (limit.isLimit _)
 #align category_theory.limits.pullback_symmetry CategoryTheory.Limits.pullbackSymmetry
 
 @[reassoc (attr := simp)]
@@ -1548,8 +1579,7 @@ variable (f : X ⟶ Y) (g : X ⟶ Z)
 
 /-- Making this a global instance would make the typeclass search go in an infinite loop. -/
 theorem hasPushout_symmetry [HasPushout f g] : HasPushout g f :=
-  ⟨⟨⟨PushoutCocone.mk _ _ pushout.condition.symm,
-        PushoutCocone.flipIsColimit (pushoutIsPushout _ _)⟩⟩⟩
+  ⟨⟨⟨_, PushoutCocone.flipIsColimit (pushoutIsPushout f g)⟩⟩⟩
 #align category_theory.limits.has_pushout_symmetry CategoryTheory.Limits.hasPushout_symmetry
 
 attribute [local instance] hasPushout_symmetry
@@ -1557,9 +1587,7 @@ attribute [local instance] hasPushout_symmetry
 /-- The isomorphism `Y ⨿[X] Z ≅ Z ⨿[X] Y`. -/
 def pushoutSymmetry [HasPushout f g] : pushout f g ≅ pushout g f :=
   IsColimit.coconePointUniqueUpToIso
-    (PushoutCocone.flipIsColimit (pushoutIsPushout f g) :
-      IsColimit (PushoutCocone.mk _ _ pushout.condition.symm))
-    (colimit.isColimit _)
+    (PushoutCocone.flipIsColimit (pushoutIsPushout f g)) (colimit.isColimit _)
 #align category_theory.limits.pushout_symmetry CategoryTheory.Limits.pushoutSymmetry
 
 @[reassoc (attr := simp)]
@@ -2338,11 +2366,11 @@ def pullbackAssocIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
       (PullbackCone.mk (l₁ ≫ g₁) l₂
         (show (l₁ ≫ g₁) ≫ f₁ = l₂ ≫ g₃ ≫ f₂ by
           rw [pullback.lift_fst_assoc, Category.assoc, Category.assoc, pullback.condition])) := by
-  apply PullbackCone.flipIsLimit
+  apply PullbackCone.isLimitOfFlip
   apply bigSquareIsPullback
-  · apply PullbackCone.flipIsLimit
+  · apply PullbackCone.isLimitOfFlip
     exact pullbackIsPullback f₁ f₂
-  · apply PullbackCone.flipIsLimit
+  · apply PullbackCone.isLimitOfFlip
     apply pullbackPullbackLeftIsPullback
   · exact pullback.lift_fst _ _ _
   · exact pullback.condition.symm
@@ -2355,13 +2383,13 @@ theorem hasPullback_assoc [HasPullback (g₂ ≫ f₃) f₄] : HasPullback f₁
 /-- `X₁ ×[Y₁] (X₂ ×[Y₂] X₃)` is the pullback `(X₁ ×[Y₁] X₂) ×[X₂] (X₂ ×[Y₂] X₃)`. -/
 def pullbackPullbackRightIsPullback [HasPullback f₁ (g₃ ≫ f₂)] :
     IsLimit (PullbackCone.mk l₁' l₂' (show l₁' ≫ g₂ = l₂' ≫ g₃ from pullback.lift_snd _ _ _)) := by
-  apply PullbackCone.flipIsLimit
+  apply PullbackCone.isLimitOfFlip
   apply leftSquareIsPullback
-  · apply PullbackCone.flipIsLimit
+  · apply PullbackCone.isLimitOfFlip
     exact pullbackIsPullback f₁ f₂
-  · apply PullbackCone.flipIsLimit
-    convert pullbackIsPullback f₁ (g₃ ≫ f₂)
-    rw [pullback.lift_fst]
+  · apply PullbackCone.isLimitOfFlip
+    exact IsLimit.ofIsoLimit (pullbackIsPullback f₁ (g₃ ≫ f₂))
+      (PullbackCone.ext (Iso.refl _) (by simp) (by simp))
   · exact pullback.condition.symm
 #align category_theory.limits.pullback_pullback_right_is_pullback CategoryTheory.Limits.pullbackPullbackRightIsPullback
 
@@ -2527,13 +2555,12 @@ local notation "l₂'" =>
 def pushoutPushoutLeftIsPushout [HasPushout (g₃ ≫ f₂) g₄] :
     IsColimit
       (PushoutCocone.mk l₁' l₂' (show f₂ ≫ l₁' = f₃ ≫ l₂' from (pushout.inl_desc _ _ _).symm)) := by
-  apply PushoutCocone.flipIsColimit
+  apply PushoutCocone.isColimitOfFlip
   apply rightSquareIsPushout
-  · apply PushoutCocone.flipIsColimit
-    exact pushoutIsPushout _ _
-  · apply PushoutCocone.flipIsColimit
-    convert pushoutIsPushout (g₃ ≫ f₂) g₄
-    exact pushout.inr_desc _ _ _
+  · apply PushoutCocone.isColimitOfFlip
+    exact pushoutIsPushout g₃ g₄
+  · exact IsColimit.ofIsoColimit (PushoutCocone.flipIsColimit (pushoutIsPushout (g₃ ≫ f₂) g₄))
+      (PushoutCocone.ext (Iso.refl _) (by simp) (by simp))
   · exact pushout.condition.symm
 #align category_theory.limits.pushout_pushout_left_is_pushout CategoryTheory.Limits.pushoutPushoutLeftIsPushout
 
@@ -2567,12 +2594,12 @@ def pushoutAssocSymmIsPushout [HasPushout g₁ (g₂ ≫ f₃)] :
       (PushoutCocone.mk l₁ (f₄ ≫ l₂)
         (show (g₃ ≫ f₂) ≫ l₁ = g₄ ≫ f₄ ≫ l₂ by
           rw [Category.assoc, pushout.inr_desc, pushout.condition_assoc])) := by
-  apply PushoutCocone.flipIsColimit
+  apply PushoutCocone.isColimitOfFlip
   apply bigSquareIsPushout
-  · apply PushoutCocone.flipIsColimit
+  · apply PushoutCocone.isColimitOfFlip
     apply pushoutPushoutRightIsPushout
-  · apply PushoutCocone.flipIsColimit
-    exact pushoutIsPushout _ _
+  · apply PushoutCocone.isColimitOfFlip
+    exact pushoutIsPushout g₃ g₄
   · exact pushout.condition.symm
   · exact (pushout.inr_desc _ _ _).symm
 #align category_theory.limits.pushout_assoc_symm_is_pushout CategoryTheory.Limits.pushoutAssocSymmIsPushout
chore: remove redundant dsimp args (#9835)

This is needed to work with leanprover/lean4#3087

Diff
@@ -616,7 +616,7 @@ theorem equalizer_ext (t : PullbackCone f g) {W : C} {k l : W ⟶ t.pt} (h₀ :
     (h₁ : k ≫ snd t = l ≫ snd t) : ∀ j : WalkingCospan, k ≫ t.π.app j = l ≫ t.π.app j
   | some WalkingPair.left => h₀
   | some WalkingPair.right => h₁
-  | none => by rw [← t.w inl]; dsimp [h₀]; simp only [← Category.assoc, congrArg (· ≫ f) h₀]
+  | none => by rw [← t.w inl, reassoc_of% h₀]
 #align category_theory.limits.pullback_cone.equalizer_ext CategoryTheory.Limits.PullbackCone.equalizer_ext
 
 theorem IsLimit.hom_ext {t : PullbackCone f g} (ht : IsLimit t) {W : C} {k l : W ⟶ t.pt}
chore: space after (#8178)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -635,7 +635,7 @@ theorem mono_snd_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t)
 theorem mono_fst_of_is_pullback_of_mono {t : PullbackCone f g} (ht : IsLimit t) [Mono g] :
     Mono t.fst := by
   refine ⟨fun {W} h k i => IsLimit.hom_ext ht i ?_⟩
-  rw [← cancel_mono g, Category.assoc, Category.assoc, ←condition]
+  rw [← cancel_mono g, Category.assoc, Category.assoc, ← condition]
   have := congrArg (· ≫ f) i; dsimp at this
   rwa [Category.assoc, Category.assoc] at this
 #align category_theory.limits.pullback_cone.mono_fst_of_is_pullback_of_mono CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono
fix: attribute [simp] ... in -> attribute [local simp] ... in (#7678)

Mathlib.Logic.Unique contains the line attribute [simp] eq_iff_true_of_subsingleton in ...:

https://github.com/leanprover-community/mathlib4/blob/96a11c7aac574c00370c2b3dab483cb676405c5d/Mathlib/Logic/Unique.lean#L255-L256

Despite what the in part may imply, this adds the lemma to the simp set "globally", including for downstream files; it is likely that attribute [local simp] eq_iff_true_of_subsingleton in ... was meant instead (or maybe scoped simp, but I think "scoped" refers to the current namespace). Indeed, the relevant lemma is not marked with @[simp] for possible slowness: https://github.com/leanprover/std4/blob/846e9e1d6bb534774d1acd2dc430e70987da3c18/Std/Logic.lean#L749. Adding it to the simp set causes the example at https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Regression.20in.20simp to slow down.

This PR changes this and fixes the relevant downstream simps. There was also one ocurrence of attribute [simp] FullSubcategory.comp_def FullSubcategory.id_def in in Mathlib.CategoryTheory.Monoidal.Subcategory but that was much easier to fix.

https://github.com/leanprover-community/mathlib4/blob/bc49eb9ba756a233370b4b68bcdedd60402f71ed/Mathlib/CategoryTheory/Monoidal/Subcategory.lean#L118-L119

Diff
@@ -107,7 +107,8 @@ abbrev Hom.id (X : WalkingCospan) : X ⟶ X :=
   WidePullbackShape.Hom.id X
 #align category_theory.limits.walking_cospan.hom.id CategoryTheory.Limits.WalkingCospan.Hom.id
 
-instance (X Y : WalkingCospan) : Subsingleton (X ⟶ Y) := by constructor; intros; simp
+instance (X Y : WalkingCospan) : Subsingleton (X ⟶ Y) := by
+  constructor; intros; simp [eq_iff_true_of_subsingleton]
 
 end WalkingCospan
 
@@ -136,7 +137,8 @@ abbrev Hom.id (X : WalkingSpan) : X ⟶ X :=
   WidePushoutShape.Hom.id X
 #align category_theory.limits.walking_span.hom.id CategoryTheory.Limits.WalkingSpan.Hom.id
 
-instance (X Y : WalkingSpan) : Subsingleton (X ⟶ Y) := by constructor; intros a b; simp
+instance (X Y : WalkingSpan) : Subsingleton (X ⟶ Y) := by
+  constructor; intros a b; simp [eq_iff_true_of_subsingleton]
 
 end WalkingSpan
 
chore: fix whitespace typos (#7950)
Diff
@@ -2393,7 +2393,7 @@ noncomputable def pullbackAssoc [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_inv_fst_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)]:
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.fst = pullback.fst := by
   trans l₁' ≫ pullback.fst
   rw [← Category.assoc]
@@ -2584,7 +2584,7 @@ theorem hasPushout_assoc_symm [HasPushout g₁ (g₂ ≫ f₃)] : HasPushout (g
 
 /-- The canonical isomorphism `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃ ≅ X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)`. -/
 noncomputable def pushoutAssoc [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))]:
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout (g₃ ≫ pushout.inr : _ ⟶ pushout g₁ g₂) g₄ ≅
       pushout g₁ (g₂ ≫ pushout.inl : _ ⟶ pushout g₃ g₄) :=
   (pushoutPushoutLeftIsPushout g₁ g₂ g₃ g₄).coconePointUniqueUpToIso
chore: remove trailing space in backticks (#7617)

This will improve spaces in the mathlib4 docs.

Diff
@@ -1329,7 +1329,7 @@ instance pushout.inr_of_epi {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout
   PushoutCocone.epi_inr_of_is_pushout_of_epi (colimit.isColimit _)
 #align category_theory.limits.pushout.inr_of_epi CategoryTheory.Limits.pushout.inr_of_epi
 
-/-- The map ` X ⨿ Y ⟶ X ⨿[Z] Y` is epi. -/
+/-- The map `X ⨿ Y ⟶ X ⨿[Z] Y` is epi. -/
 instance epi_coprod_to_pushout {C : Type*} [Category C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
     [HasPushout f g] [HasBinaryCoproduct Y Z] :
     Epi (coprod.desc pushout.inl pushout.inr : _ ⟶ pushout f g) :=
chore: cleanup some spaces (#7484)

Purely cosmetic PR.

Diff
@@ -1594,7 +1594,7 @@ open WalkingCospan
 noncomputable def pullbackIsPullbackOfCompMono (f : X ⟶ W) (g : Y ⟶ W) (i : W ⟶ Z) [Mono i]
     [HasPullback f g] : IsLimit (PullbackCone.mk pullback.fst pullback.snd
       (show pullback.fst ≫ f ≫ i = pullback.snd ≫ g ≫ i from by -- Porting note: used to be _
-        simp only [← Category.assoc]; rw [cancel_mono]; apply pullback.condition )) :=
+        simp only [← Category.assoc]; rw [cancel_mono]; apply pullback.condition)) :=
   PullbackCone.isLimitOfCompMono f g i _ (limit.isLimit (cospan f g))
 #align category_theory.limits.pullback_is_pullback_of_comp_mono CategoryTheory.Limits.pullbackIsPullbackOfCompMono
 
style: a linter for colons (#6761)

A linter that throws on seeing a colon at the start of a line, according to the style guideline that says these operators should go before linebreaks.

Diff
@@ -1708,8 +1708,8 @@ theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
 
 @[simp]
-theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g
-  := rfl
+theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g :=
+  rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right
 
 /-- Verify that the constructed limit cone is indeed a limit. -/
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -1292,7 +1292,7 @@ instance pullback.snd_of_mono {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullba
 #align category_theory.limits.pullback.snd_of_mono CategoryTheory.Limits.pullback.snd_of_mono
 
 /-- The map `X ×[Z] Y ⟶ X × Y` is mono. -/
-instance mono_pullback_to_prod {C : Type _} [Category C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
+instance mono_pullback_to_prod {C : Type*} [Category C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
     [HasPullback f g] [HasBinaryProduct X Y] :
     Mono (prod.lift pullback.fst pullback.snd : pullback f g ⟶ _) :=
   ⟨fun {W} i₁ i₂ h => by
@@ -1330,7 +1330,7 @@ instance pushout.inr_of_epi {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout
 #align category_theory.limits.pushout.inr_of_epi CategoryTheory.Limits.pushout.inr_of_epi
 
 /-- The map ` X ⨿ Y ⟶ X ⨿[Z] Y` is epi. -/
-instance epi_coprod_to_pushout {C : Type _} [Category C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
+instance epi_coprod_to_pushout {C : Type*} [Category C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
     [HasPushout f g] [HasBinaryCoproduct Y Z] :
     Epi (coprod.desc pushout.inl pushout.inr : _ ⟶ pushout f g) :=
   ⟨fun {W} i₁ i₂ h => by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Scott Morrison, Markus Himmel, Bhavik Mehta, Andrew Yang
-
-! This file was ported from Lean 3 source module category_theory.limits.shapes.pullbacks
-! leanprover-community/mathlib commit 7316286ff2942aa14e540add9058c6b0aa1c8070
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks
 import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts
 
+#align_import category_theory.limits.shapes.pullbacks from "leanprover-community/mathlib"@"7316286ff2942aa14e540add9058c6b0aa1c8070"
+
 /-!
 # Pullbacks
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1222,11 +1222,11 @@ theorem pushout.condition {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f
 
 /-- Given such a diagram, then there is a natural morphism `W ×ₛ X ⟶ Y ×ₜ Z`.
 
-    W  ⟶  Y
+    W ⟶ Y
       ↘      ↘
-        S  ⟶  T
+        S ⟶ T
       ↗      ↗
-    X  ⟶  Z
+    X ⟶ Z
 
 -/
 abbrev pullback.map {W X Y Z S T : C} (f₁ : W ⟶ S) (f₂ : X ⟶ S) [HasPullback f₁ f₂] (g₁ : Y ⟶ T)
@@ -1244,11 +1244,11 @@ abbrev pullback.mapDesc {X Y S T : C} (f : X ⟶ S) (g : Y ⟶ S) (i : S ⟶ T)
 
 /-- Given such a diagram, then there is a natural morphism `W ⨿ₛ X ⟶ Y ⨿ₜ Z`.
 
-        W  ⟶  Y
+        W ⟶ Y
       ↗      ↗
-    S  ⟶  T
+    S ⟶ T
       ↘      ↘
-        X  ⟶  Z
+        X ⟶ Z
 
 -/
 abbrev pushout.map {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [HasPushout f₁ f₂] (g₁ : T ⟶ Y)
@@ -2383,11 +2383,11 @@ theorem hasPullback_assoc_symm [HasPullback f₁ (g₃ ≫ f₂)] : HasPullback
 
 /- Porting note : these don't seem to be propagating change from
 -- variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ (g₃ ≫ f₂)] -/
-variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)]
+variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)]
 
 /-- The canonical isomorphism `(X₁ ×[Y₁] X₂) ×[Y₂] X₃ ≅ X₁ ×[Y₁] (X₂ ×[Y₂] X₃)`. -/
 noncomputable def pullbackAssoc [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     pullback (pullback.snd ≫ f₃ : pullback f₁ f₂ ⟶ _) f₄ ≅
       pullback f₁ (pullback.fst ≫ f₂ : pullback f₃ f₄ ⟶ _) :=
   (pullbackPullbackLeftIsPullback f₁ f₂ f₃ f₄).conePointUniqueUpToIso
@@ -2396,7 +2396,7 @@ noncomputable def pullbackAssoc [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_inv_fst_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)]:
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)]:
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.fst = pullback.fst := by
   trans l₁' ≫ pullback.fst
   rw [← Category.assoc]
@@ -2407,14 +2407,14 @@ theorem pullbackAssoc_inv_fst_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_hom_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫ pullback.fst = pullback.fst ≫ pullback.fst := by
   rw [← Iso.eq_inv_comp, pullbackAssoc_inv_fst_fst]
 #align category_theory.limits.pullback_assoc_hom_fst CategoryTheory.Limits.pullbackAssoc_hom_fst
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_hom_snd_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] : (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] : (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫
     pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd := by
   trans l₂ ≫ pullback.fst
   rw [← Category.assoc]
@@ -2425,7 +2425,7 @@ theorem pullbackAssoc_hom_snd_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_hom_snd_snd [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫ pullback.snd ≫ pullback.snd = pullback.snd := by
   trans l₂ ≫ pullback.snd
   rw [← Category.assoc]
@@ -2436,14 +2436,14 @@ theorem pullbackAssoc_hom_snd_snd [HasPullback ((pullback.snd : Z₁ ⟶ X₂) 
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_inv_fst_snd [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.fst ≫ pullback.snd = pullback.snd ≫ pullback.fst :=
   by rw [Iso.inv_comp_eq, pullbackAssoc_hom_snd_fst]
 #align category_theory.limits.pullback_assoc_inv_fst_snd CategoryTheory.Limits.pullbackAssoc_inv_fst_snd
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_inv_snd [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶ X₂) ≫ f₂)] :
     (pullbackAssoc f₁ f₂ f₃ f₄).inv ≫ pullback.snd = pullback.snd ≫ pullback.snd := by
   rw [Iso.inv_comp_eq, pullbackAssoc_hom_snd_snd]
 #align category_theory.limits.pullback_assoc_inv_snd CategoryTheory.Limits.pullbackAssoc_inv_snd
@@ -2586,8 +2586,8 @@ theorem hasPushout_assoc_symm [HasPushout g₁ (g₂ ≫ f₃)] : HasPushout (g
 -- variable [HasPushout (g₃ ≫ f₂) g₄] [HasPushout g₁ (g₂ ≫ f₃)]
 
 /-- The canonical isomorphism `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃ ≅ X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)`. -/
-noncomputable def pushoutAssoc [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))]:
+noncomputable def pushoutAssoc [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))]:
     pushout (g₃ ≫ pushout.inr : _ ⟶ pushout g₁ g₂) g₄ ≅
       pushout g₁ (g₂ ≫ pushout.inl : _ ⟶ pushout g₃ g₄) :=
   (pushoutPushoutLeftIsPushout g₁ g₂ g₃ g₄).coconePointUniqueUpToIso
@@ -2595,8 +2595,8 @@ noncomputable def pushoutAssoc [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y
 #align category_theory.limits.pushout_assoc CategoryTheory.Limits.pushoutAssoc
 
 @[reassoc (attr := simp)]
-theorem inl_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inl_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inl ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).hom = pushout.inl := by
   trans f₁ ≫ l₁
   · congr 1
@@ -2607,8 +2607,8 @@ theorem inl_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶
 #align category_theory.limits.inl_inl_pushout_assoc_hom CategoryTheory.Limits.inl_inl_pushoutAssoc_hom
 
 @[reassoc (attr := simp)]
-theorem inr_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inr_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inr ≫ pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).hom = pushout.inl ≫ pushout.inr := by
   trans f₂ ≫ l₁
   · congr 1
@@ -2619,8 +2619,8 @@ theorem inr_inl_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶
 #align category_theory.limits.inr_inl_pushout_assoc_hom CategoryTheory.Limits.inr_inl_pushoutAssoc_hom
 
 @[reassoc (attr := simp)]
-theorem inr_inr_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inr_inr_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inr ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr := by
   trans f₄ ≫ l₂'
   · congr 1
@@ -2631,22 +2631,22 @@ theorem inr_inr_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶
 #align category_theory.limits.inr_inr_pushout_assoc_inv CategoryTheory.Limits.inr_inr_pushoutAssoc_inv
 
 @[reassoc (attr := simp)]
-theorem inl_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inl_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inl ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inl ≫ pushout.inl := by
   rw [Iso.comp_inv_eq, Category.assoc, inl_inl_pushoutAssoc_hom]
 #align category_theory.limits.inl_pushout_assoc_inv CategoryTheory.Limits.inl_pushoutAssoc_inv
 
 @[reassoc (attr := simp)]
-theorem inl_inr_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inl_inr_pushoutAssoc_inv [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inl ≫ pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).inv = pushout.inr ≫ pushout.inl := by
   rw [← Category.assoc, Iso.comp_inv_eq, Category.assoc, inr_inl_pushoutAssoc_hom]
 #align category_theory.limits.inl_inr_pushout_assoc_inv CategoryTheory.Limits.inl_inr_pushoutAssoc_inv
 
 @[reassoc (attr := simp)]
-theorem inr_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶  Y₁)) g₄]
-    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶  Y₂))] :
+theorem inr_pushoutAssoc_hom [HasPushout (g₃ ≫ (pushout.inr : X₂ ⟶ Y₁)) g₄]
+    [HasPushout g₁ (g₂ ≫ (pushout.inl : X₂ ⟶ Y₂))] :
     pushout.inr ≫ (pushoutAssoc g₁ g₂ g₃ g₄).hom = pushout.inr ≫ pushout.inr := by
   rw [← Iso.eq_comp_inv, Category.assoc, inr_inr_pushoutAssoc_inv]
 #align category_theory.limits.inr_pushout_assoc_hom CategoryTheory.Limits.inr_pushoutAssoc_hom
chore: dualize statements about pullbacks to pushouts (#5700)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2700,6 +2700,13 @@ instance (priority := 100) hasPullbacks_of_hasWidePullbacks (D : Type u) [h : Ca
   infer_instance
 #align category_theory.limits.has_pullbacks_of_has_wide_pullbacks CategoryTheory.Limits.hasPullbacks_of_hasWidePullbacks
 
+-- see Note [lower instance priority]
+/-- Having wide pushout at any universe level implies having binary pushouts. -/
+instance (priority := 100) hasPushouts_of_hasWidePushouts (D : Type u) [h : Category.{v} D]
+    [h' : HasWidePushouts.{w} D] : HasPushouts.{v,u} D := by
+  haveI I := @hasWidePushouts_shrink.{0, w} D h h'
+  infer_instance
+
 variable {C}
 
 -- Porting note: removed semireducible from the simps config
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -737,7 +737,7 @@ def isLimitOfFactors (f : X ⟶ Z) (g : Y ⟶ Z) (h : W ⟶ Z) [Mono h] (x : X 
     ⟨hs.lift (PullbackCone.mk t.fst t.snd <| by rw [← hxh, ← hyh, this]),
       ⟨hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right, fun hr hr' => by
         apply PullbackCone.IsLimit.hom_ext hs <;>
-              simp only [PullbackCone.mk_fst, PullbackCone.mk_snd] at hr hr'⊢ <;>
+              simp only [PullbackCone.mk_fst, PullbackCone.mk_snd] at hr hr' ⊢ <;>
             simp only [hr, hr'] <;>
           symm
         exacts [hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right]⟩⟩
@@ -986,11 +986,11 @@ def isColimitOfFactors (f : X ⟶ Y) (g : X ⟶ Z) (h : X ⟶ W) [Epi h] (x : W
     rw [← hhx, ← hhy, Category.assoc, Category.assoc, t.condition]),
       ⟨hs.fac _ WalkingSpan.left, hs.fac _ WalkingSpan.right, fun hr hr' => by
         apply PushoutCocone.IsColimit.hom_ext hs;
-        · simp only [PushoutCocone.mk_inl, PushoutCocone.mk_inr] at hr hr'⊢
+        · simp only [PushoutCocone.mk_inl, PushoutCocone.mk_inr] at hr hr' ⊢
           simp only [hr, hr']
           symm
           exact hs.fac _ WalkingSpan.left
-        · simp only [PushoutCocone.mk_inl, PushoutCocone.mk_inr] at hr hr'⊢
+        · simp only [PushoutCocone.mk_inl, PushoutCocone.mk_inr] at hr hr' ⊢
           simp only [hr, hr']
           symm
           exact hs.fac _ WalkingSpan.right⟩⟩
chore: fix grammar 2/3 (#5002)

Part 2 of #5001

Diff
@@ -255,7 +255,7 @@ theorem span_map_id {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) (w : WalkingSpan) :
     (span f g).map (WalkingSpan.Hom.id w) = 𝟙 _ := rfl
 #align category_theory.limits.span_map_id CategoryTheory.Limits.span_map_id
 
-/-- Every diagram indexing an pullback is naturally isomorphic (actually, equal) to a `cospan` -/
+/-- Every diagram indexing a pullback is naturally isomorphic (actually, equal) to a `cospan` -/
 -- @[simps (config := { rhsMd := semireducible })]  Porting note: no semireducible
 @[simps!]
 def diagramIsoCospan (F : WalkingCospan ⥤ C) : F ≅ cospan (F.map inl) (F.map inr) :=
chore: fix many typos (#4983)

These are all doc fixes

Diff
@@ -1032,7 +1032,7 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
 
 /-- This is a helper construction that can be useful when verifying that a category has all
     pushout. Given `F : WalkingSpan ⥤ C`, which is really the same as
-    `span (F.map fst) (F.mal snd)`, and a pushout cocone on `F.map fst` and `F.map snd`,
+    `span (F.map fst) (F.map snd)`, and a pushout cocone on `F.map fst` and `F.map snd`,
     we get a cocone on `F`.
 
     If you're thinking about using this, have a look at `hasPushouts_of_hasColimit_span`, which
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -1036,7 +1036,7 @@ def Cone.ofPullbackCone {F : WalkingCospan ⥤ C} (t : PullbackCone (F.map inl)
     we get a cocone on `F`.
 
     If you're thinking about using this, have a look at `hasPushouts_of_hasColimit_span`, which
-    you may find to be an easiery way of achieving your goal.  -/
+    you may find to be an easier way of achieving your goal. -/
 @[simps]
 def Cocone.ofPushoutCocone {F : WalkingSpan ⥤ C} (t : PushoutCocone (F.map fst) (F.map snd)) :
     Cocone F where
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -740,7 +740,7 @@ def isLimitOfFactors (f : X ⟶ Z) (g : Y ⟶ Z) (h : W ⟶ Z) [Mono h] (x : X 
               simp only [PullbackCone.mk_fst, PullbackCone.mk_snd] at hr hr'⊢ <;>
             simp only [hr, hr'] <;>
           symm
-        exacts[hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right]⟩⟩
+        exacts [hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right]⟩⟩
 #align category_theory.limits.pullback_cone.is_limit_of_factors CategoryTheory.Limits.PullbackCone.isLimitOfFactors
 
 /-- If `W` is the pullback of `f, g`,
chore: review of automation in category theory (#4793)

Clean up of automation in the category theory library. Leaving out unnecessary proof steps, or fields done by aesop_cat, and making more use of available autoparameters.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -153,7 +153,7 @@ of the cone points and check it commutes with the legs to `left` and `right`. -/
 def WalkingCospan.ext {F : WalkingCospan ⥤ C} {s t : Cone F} (i : s.pt ≅ t.pt)
     (w₁ : s.π.app WalkingCospan.left = i.hom ≫ t.π.app WalkingCospan.left)
     (w₂ : s.π.app WalkingCospan.right = i.hom ≫ t.π.app WalkingCospan.right) : s ≅ t := by
-  apply Cones.ext i
+  apply Cones.ext i _
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.π.naturality WalkingCospan.Hom.inl
     dsimp at h₁
@@ -172,7 +172,7 @@ of the cocone points and check it commutes with the legs from `left` and `right`
 def WalkingSpan.ext {F : WalkingSpan ⥤ C} {s t : Cocone F} (i : s.pt ≅ t.pt)
     (w₁ : s.ι.app WalkingCospan.left ≫ i.hom = t.ι.app WalkingCospan.left)
     (w₂ : s.ι.app WalkingCospan.right ≫ i.hom = t.ι.app WalkingCospan.right) : s ≅ t := by
-  apply Cocones.ext i
+  apply Cocones.ext i _
   rintro (⟨⟩ | ⟨⟨⟩⟩)
   · have h₁ := s.ι.naturality WalkingSpan.Hom.fst
     dsimp at h₁
@@ -2708,7 +2708,7 @@ pullbacks. This is right adjoint to `over.map` (TODO) -/
 @[simps! (config := { simpRhs := true}) obj_left obj_hom map_left]
 def baseChange [HasPullbacks C] {X Y : C} (f : X ⟶ Y) : Over Y ⥤ Over X where
   obj g := Over.mk (pullback.snd : pullback g.hom f ⟶ _)
-  map i := Over.homMk (pullback.map _ _ _ _ i.left (𝟙 _) (𝟙 _) (by simp) (by simp)) (by simp)
+  map i := Over.homMk (pullback.map _ _ _ _ i.left (𝟙 _) (𝟙 _) (by simp) (by simp))
   map_id Z := by
     apply Over.OverMorphism.ext; apply pullback.hom_ext
     · dsimp; simp
chore: fix typos (#4518)

I ran codespell Mathlib and got tired halfway through the suggestions.

Diff
@@ -1503,7 +1503,7 @@ open WalkingCospan
 
 variable (f : X ⟶ Z) (g : Y ⟶ Z)
 
-/-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
+/-- Making this a global instance would make the typeclass search go in an infinite loop. -/
 theorem hasPullback_symmetry [HasPullback f g] : HasPullback g f :=
   ⟨⟨⟨PullbackCone.mk _ _ pullback.condition.symm,
         PullbackCone.flipIsLimit (pullbackIsPullback _ _)⟩⟩⟩
@@ -1547,7 +1547,7 @@ open WalkingCospan
 
 variable (f : X ⟶ Y) (g : X ⟶ Z)
 
-/-- Making this a global instance would make the typeclass seach go in an infinite loop. -/
+/-- Making this a global instance would make the typeclass search go in an infinite loop. -/
 theorem hasPushout_symmetry [HasPushout f g] : HasPushout g f :=
   ⟨⟨⟨PushoutCocone.mk _ _ pushout.condition.symm,
         PushoutCocone.flipIsColimit (pushoutIsPushout _ _)⟩⟩⟩
@@ -2381,7 +2381,7 @@ theorem hasPullback_assoc_symm [HasPullback f₁ (g₃ ≫ f₂)] : HasPullback
   ⟨⟨⟨_, pullbackAssocSymmIsPullback f₁ f₂ f₃ f₄⟩⟩⟩
 #align category_theory.limits.has_pullback_assoc_symm CategoryTheory.Limits.hasPullback_assoc_symm
 
-/- Porting note : these don't seem to be propogating change from
+/- Porting note : these don't seem to be propagating change from
 -- variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ (g₃ ≫ f₂)] -/
 variable [HasPullback (g₂ ≫ f₃) f₄] [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)]
 
@@ -2582,7 +2582,7 @@ theorem hasPushout_assoc_symm [HasPushout g₁ (g₂ ≫ f₃)] : HasPushout (g
   ⟨⟨⟨_, pushoutAssocSymmIsPushout g₁ g₂ g₃ g₄⟩⟩⟩
 #align category_theory.limits.has_pushout_assoc_symm CategoryTheory.Limits.hasPushout_assoc_symm
 
--- Porting note: these are not propogating so moved into statements
+-- Porting note: these are not propagating so moved into statements
 -- variable [HasPushout (g₃ ≫ f₂) g₄] [HasPushout g₁ (g₂ ≫ f₃)]
 
 /-- The canonical isomorphism `(X₁ ⨿[Z₁] X₂) ⨿[Z₂] X₃ ≅ X₁ ⨿[Z₁] (X₂ ⨿[Z₂] X₃)`. -/
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -690,8 +690,7 @@ def IsLimit.mk {W : C} {fst : W ⟶ X} {snd : W ⟶ Y} (eq : fst ≫ f = snd ≫
 /-- The flip of a pullback square is a pullback square. -/
 def flipIsLimit {W : C} {h : W ⟶ X} {k : W ⟶ Y} {comm : h ≫ f = k ≫ g}
     (t : IsLimit (mk _ _ comm.symm)) : IsLimit (mk _ _ comm) :=
-  isLimitAux' _ fun s =>
-    by
+  isLimitAux' _ fun s => by
     refine'
       ⟨(IsLimit.lift' t _ _ s.condition.symm).1, (IsLimit.lift' t _ _ _).2.2,
         (IsLimit.lift' t _ _ _).2.1, fun m₁ m₂ => t.hom_ext _⟩
@@ -736,8 +735,7 @@ def isLimitOfFactors (f : X ⟶ Z) (g : Y ⟶ Z) (h : W ⟶ Z) [Mono h] (x : X 
       rw [← Category.assoc, ← Category.assoc]
       apply congrArg (· ≫ h) t.condition
     ⟨hs.lift (PullbackCone.mk t.fst t.snd <| by rw [← hxh, ← hyh, this]),
-      ⟨hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right, fun hr hr' =>
-        by
+      ⟨hs.fac _ WalkingCospan.left, hs.fac _ WalkingCospan.right, fun hr hr' => by
         apply PullbackCone.IsLimit.hom_ext hs <;>
               simp only [PullbackCone.mk_fst, PullbackCone.mk_snd] at hr hr'⊢ <;>
             simp only [hr, hr'] <;>
@@ -943,8 +941,7 @@ def IsColimit.mk {W : C} {inl : Y ⟶ W} {inr : Z ⟶ W} (eq : f ≫ inl = g ≫
 /-- The flip of a pushout square is a pushout square. -/
 def flipIsColimit {W : C} {h : Y ⟶ W} {k : Z ⟶ W} {comm : f ≫ h = g ≫ k}
     (t : IsColimit (mk _ _ comm.symm)) : IsColimit (mk _ _ comm) :=
-  isColimitAux' _ fun s =>
-    by
+  isColimitAux' _ fun s => by
     refine'
       ⟨(IsColimit.desc' t _ _ s.condition.symm).1, (IsColimit.desc' t _ _ _).2.2,
         (IsColimit.desc' t _ _ _).2.1, fun m₁ m₂ => t.hom_ext _⟩
@@ -968,8 +965,7 @@ The converse is given in `PushoutCocone.isColimitMkIdId`.
 -/
 theorem epi_of_isColimitMkIdId (f : X ⟶ Y)
     (t : IsColimit (mk (𝟙 Y) (𝟙 Y) rfl : PushoutCocone f f)) : Epi f :=
-  ⟨fun {Z} g h eq =>
-    by
+  ⟨fun {Z} g h eq => by
     rcases PushoutCocone.IsColimit.desc' t _ _ eq with ⟨_, rfl, rfl⟩
     rfl⟩
 #align category_theory.limits.pushout_cocone.epi_of_is_colimit_mk_id_id CategoryTheory.Limits.PushoutCocone.epi_of_isColimitMkIdId
@@ -2329,9 +2325,8 @@ local notation "l₁'" =>
 local notation "l₂'" => (pullback.snd : W' ⟶ Z₂)
 
 /-- `(X₁ ×[Y₁] X₂) ×[Y₂] X₃` is the pullback `(X₁ ×[Y₁] X₂) ×[X₂] (X₂ ×[Y₂] X₃)`. -/
-def pullbackPullbackLeftIsPullback [HasPullback (g₂ ≫ f₃) f₄] :
-    IsLimit (PullbackCone.mk l₁ l₂ (show l₁ ≫ g₂ = l₂ ≫ g₃ from (pullback.lift_fst _ _ _).symm)) :=
-  by
+def pullbackPullbackLeftIsPullback [HasPullback (g₂ ≫ f₃) f₄] : IsLimit (PullbackCone.mk l₁ l₂
+    (show l₁ ≫ g₂ = l₂ ≫ g₃ from (pullback.lift_fst _ _ _).symm)) := by
   apply leftSquareIsPullback
   exact pullbackIsPullback f₃ f₄
   convert pullbackIsPullback (g₂ ≫ f₃) f₄
@@ -2419,9 +2414,8 @@ theorem pullbackAssoc_hom_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f
 
 @[reassoc (attr := simp)]
 theorem pullbackAssoc_hom_snd_fst [HasPullback ((pullback.snd : Z₁ ⟶ X₂) ≫ f₃) f₄]
-    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] :
-    (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd :=
-  by
+    [HasPullback f₁ ((pullback.fst : Z₂ ⟶  X₂) ≫ f₂)] : (pullbackAssoc f₁ f₂ f₃ f₄).hom ≫
+    pullback.snd ≫ pullback.fst = pullback.fst ≫ pullback.snd := by
   trans l₂ ≫ pullback.fst
   rw [← Category.assoc]
   congr 1
feat: port CategoryTheory.Limits.Shapes.Diagonal (#2881)
Diff
@@ -1272,7 +1272,7 @@ abbrev pushout.mapLift {X Y S T : C} (f : T ⟶ X) (g : T ⟶ Y) (i : S ⟶ T) [
 
 /-- Two morphisms into a pullback are equal if their compositions with the pullback morphisms are
     equal -/
-@[ext]
+@[ext 1100]
 theorem pullback.hom_ext {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f g] {W : C}
     {k l : W ⟶ pullback f g} (h₀ : k ≫ pullback.fst = l ≫ pullback.fst)
     (h₁ : k ≫ pullback.snd = l ≫ pullback.snd) : k = l :=
@@ -1283,7 +1283,7 @@ theorem pullback.hom_ext {X Y Z : C} {f : X ⟶ Z} {g : Y ⟶ Z} [HasPullback f
 def pullbackIsPullback {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g] :
     IsLimit (PullbackCone.mk (pullback.fst : pullback f g ⟶ _) pullback.snd pullback.condition) :=
   PullbackCone.IsLimit.mk _ (fun s => pullback.lift s.fst s.snd s.condition) (by simp) (by simp)
-    (by intros; apply pullback.hom_ext; simpa; simpa)
+    (by aesop_cat)
 #align category_theory.limits.pullback_is_pullback CategoryTheory.Limits.pullbackIsPullback
 
 /-- The pullback of a monomorphism is a monomorphism -/
@@ -1303,14 +1303,14 @@ instance mono_pullback_to_prod {C : Type _} [Category C] {X Y Z : C} (f : X ⟶
     [HasPullback f g] [HasBinaryProduct X Y] :
     Mono (prod.lift pullback.fst pullback.snd : pullback f g ⟶ _) :=
   ⟨fun {W} i₁ i₂ h => by
-    apply pullback.hom_ext
+    ext
     · simpa using congrArg (fun f => f ≫ prod.fst) h
     · simpa using congrArg (fun f => f ≫ prod.snd) h⟩
 #align category_theory.limits.mono_pullback_to_prod CategoryTheory.Limits.mono_pullback_to_prod
 
 /-- Two morphisms out of a pushout are equal if their compositions with the pushout morphisms are
     equal -/
-@[ext]
+@[ext 1100]
 theorem pushout.hom_ext {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g] {W : C}
     {k l : pushout f g ⟶ W} (h₀ : pushout.inl ≫ k = pushout.inl ≫ l)
     (h₁ : pushout.inr ≫ k = pushout.inr ≫ l) : k = l :=
@@ -1321,7 +1321,7 @@ theorem pushout.hom_ext {X Y Z : C} {f : X ⟶ Y} {g : X ⟶ Z} [HasPushout f g]
 def pushoutIsPushout {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g] :
     IsColimit (PushoutCocone.mk (pushout.inl : _ ⟶ pushout f g) pushout.inr pushout.condition) :=
   PushoutCocone.IsColimit.mk _ (fun s => pushout.desc s.inl s.inr s.condition) (by simp) (by simp)
-    (by intros; apply pushout.hom_ext; simpa; simpa)
+    (by aesop_cat)
 #align category_theory.limits.pushout_is_pushout CategoryTheory.Limits.pushoutIsPushout
 
 /-- The pushout of an epimorphism is an epimorphism -/
@@ -1341,7 +1341,7 @@ instance epi_coprod_to_pushout {C : Type _} [Category C] {X Y Z : C} (f : X ⟶
     [HasPushout f g] [HasBinaryCoproduct Y Z] :
     Epi (coprod.desc pushout.inl pushout.inr : _ ⟶ pushout f g) :=
   ⟨fun {W} i₁ i₂ h => by
-    apply pushout.hom_ext
+    ext
     · simpa using congrArg (fun f => coprod.inl ≫ f) h
     · simpa using congrArg (fun f => coprod.inr ≫ f) h⟩
 #align category_theory.limits.epi_coprod_to_pushout CategoryTheory.Limits.epi_coprod_to_pushout
@@ -1353,8 +1353,8 @@ instance pullback.map_isIso {W X Y Z S T : C} (f₁ : W ⟶ S) (f₂ : X ⟶ S)
   refine' ⟨⟨pullback.map _ _ _ _ (inv i₁) (inv i₂) (inv i₃) _ _, _, _⟩⟩
   · rw [IsIso.comp_inv_eq, Category.assoc, eq₁, IsIso.inv_hom_id_assoc]
   · rw [IsIso.comp_inv_eq, Category.assoc, eq₂, IsIso.inv_hom_id_assoc]
-  · apply pullback.hom_ext; dsimp [map]; simp; dsimp [map]; simp
-  · apply pullback.hom_ext; dsimp [map]; simp; dsimp [map]; simp
+  · aesop_cat
+  · aesop_cat
 #align category_theory.limits.pullback.map_is_iso CategoryTheory.Limits.pullback.map_isIso
 
 /-- If `f₁ = f₂` and `g₁ = g₂`, we may construct a canonical
@@ -1370,7 +1370,7 @@ theorem pullback.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Z} {g₁ g₂ : Y 
     (h₂ : g₁ = g₂) [HasPullback f₁ g₁] [HasPullback f₂ g₂] :
     (pullback.congrHom h₁ h₂).inv =
       pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simp [h₁]) (by simp [h₂]) := by
-  apply pullback.hom_ext
+  ext
   · erw [pullback.lift_fst]
     rw [Iso.inv_comp_eq]
     erw [pullback.lift_fst_assoc]
@@ -1388,8 +1388,8 @@ instance pushout.map_isIso {W X Y Z S T : C} (f₁ : S ⟶ W) (f₂ : S ⟶ X) [
   refine' ⟨⟨pushout.map _ _ _ _ (inv i₁) (inv i₂) (inv i₃) _ _, _, _⟩⟩
   · rw [IsIso.comp_inv_eq, Category.assoc, eq₁, IsIso.inv_hom_id_assoc]
   · rw [IsIso.comp_inv_eq, Category.assoc, eq₂, IsIso.inv_hom_id_assoc]
-  · apply pushout.hom_ext; dsimp [map]; simp; dsimp [map]; simp
-  · apply pushout.hom_ext; dsimp [map]; simp; dsimp [map]; simp
+  · aesop_cat
+  · aesop_cat
 #align category_theory.limits.pushout.map_is_iso CategoryTheory.Limits.pushout.map_isIso
 
 theorem pullback.mapDesc_comp {X Y S T S' : C} (f : X ⟶ T) (g : Y ⟶ T) (i : T ⟶ S) (i' : S ⟶ S')
@@ -1397,7 +1397,7 @@ theorem pullback.mapDesc_comp {X Y S T S' : C} (f : X ⟶ T) (g : Y ⟶ T) (i :
     [HasPullback ((f ≫ i) ≫ i') ((g ≫ i) ≫ i')] :
     pullback.mapDesc f g (i ≫ i') = pullback.mapDesc f g i ≫ pullback.mapDesc _ _ i' ≫
     (pullback.congrHom (Category.assoc _ _ _) (Category.assoc _ _ _)).hom := by
-  apply pullback.hom_ext; simp; simp
+  aesop_cat
 #align category_theory.limits.pullback.map_desc_comp CategoryTheory.Limits.pullback.mapDesc_comp
 
 /-- If `f₁ = f₂` and `g₁ = g₂`, we may construct a canonical
@@ -1413,7 +1413,7 @@ theorem pushout.congrHom_inv {X Y Z : C} {f₁ f₂ : X ⟶ Y} {g₁ g₂ : X 
     (h₂ : g₁ = g₂) [HasPushout f₁ g₁] [HasPushout f₂ g₂] :
     (pushout.congrHom h₁ h₂).inv =
       pushout.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simp [h₁]) (by simp [h₂]) := by
-  apply pushout.hom_ext
+  ext
   · erw [pushout.inl_desc]
     rw [Iso.comp_inv_eq, Category.id_comp]
     erw [pushout.inl_desc]
@@ -1430,7 +1430,7 @@ theorem pushout.mapLift_comp {X Y S T S' : C} (f : T ⟶ X) (g : T ⟶ Y) (i : S
     pushout.mapLift f g (i' ≫ i) =
       (pushout.congrHom (Category.assoc _ _ _) (Category.assoc _ _ _)).hom ≫
         pushout.mapLift _ _ i' ≫ pushout.mapLift f g i := by
-  apply pushout.hom_ext; simp; simp
+  aesop_cat
 #align category_theory.limits.pushout.map_lift_comp CategoryTheory.Limits.pushout.mapLift_comp
 
 section
@@ -1466,7 +1466,7 @@ theorem map_lift_pullbackComparison (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g
     [HasPullback (G.map f) (G.map g)] {W : C} {h : W ⟶ X} {k : W ⟶ Y} (w : h ≫ f = k ≫ g) :
     G.map (pullback.lift _ _ w) ≫ pullbackComparison G f g =
       pullback.lift (G.map h) (G.map k) (by simp only [← G.map_comp, w]) := by
-  apply pullback.hom_ext; simp [← G.map_comp]; simp [← G.map_comp]
+  ext <;> simp [← G.map_comp]
 #align category_theory.limits.map_lift_pullback_comparison CategoryTheory.Limits.map_lift_pullbackComparison
 
 /-- The comparison morphism for the pushout of `f,g`.
@@ -1496,7 +1496,7 @@ theorem pushoutComparison_map_desc (f : X ⟶ Y) (g : X ⟶ Z) [HasPushout f g]
     [HasPushout (G.map f) (G.map g)] {W : C} {h : Y ⟶ W} {k : Z ⟶ W} (w : f ≫ h = g ≫ k) :
     pushoutComparison G f g ≫ G.map (pushout.desc _ _ w) =
       pushout.desc (G.map h) (G.map k) (by simp only [← G.map_comp, w]) := by
-  apply pushout.hom_ext; simp [← G.map_comp]; simp [← G.map_comp]
+  ext <;> simp [← G.map_comp]
 #align category_theory.limits.pushout_comparison_map_desc CategoryTheory.Limits.pushoutComparison_map_desc
 
 end
@@ -1656,7 +1656,7 @@ attribute [local instance] hasPullback_of_left_iso
 
 instance pullback_snd_iso_of_left_iso : IsIso (pullback.snd : pullback f g ⟶ _) := by
   refine' ⟨⟨pullback.lift (g ≫ inv f) (𝟙 _) (by simp), _, by simp⟩⟩
-  apply pullback.hom_ext
+  ext
   · simp [← pullback.condition_assoc]
   · simp [pullback.condition_assoc]
 #align category_theory.limits.pullback_snd_iso_of_left_iso CategoryTheory.Limits.pullback_snd_iso_of_left_iso
@@ -1732,7 +1732,7 @@ attribute [local instance] hasPullback_of_right_iso
 
 instance pullback_snd_iso_of_right_iso : IsIso (pullback.fst : pullback f g ⟶ _) := by
   refine' ⟨⟨pullback.lift (𝟙 _) (f ≫ inv g) (by simp), _, by simp⟩⟩
-  apply pullback.hom_ext
+  ext
   · simp
   · simp [pullback.condition_assoc]
 #align category_theory.limits.pullback_snd_iso_of_right_iso CategoryTheory.Limits.pullback_snd_iso_of_right_iso
@@ -1821,7 +1821,7 @@ attribute [local instance] hasPushout_of_left_iso
 
 instance pushout_inr_iso_of_left_iso : IsIso (pushout.inr : _ ⟶ pushout f g) := by
   refine' ⟨⟨pushout.desc (inv f ≫ g) (𝟙 _) (by simp), by simp, _⟩⟩
-  apply pushout.hom_ext
+  ext
   · simp [← pushout.condition]
   · simp [pushout.condition_assoc]
 #align category_theory.limits.pushout_inr_iso_of_left_iso CategoryTheory.Limits.pushout_inr_iso_of_left_iso
@@ -1897,7 +1897,7 @@ attribute [local instance] hasPushout_of_right_iso
 
 instance pushout_inl_iso_of_right_iso : IsIso (pushout.inl : _ ⟶ pushout f g) := by
   refine' ⟨⟨pushout.desc (𝟙 _) (inv g ≫ f) (by simp), by simp, _⟩⟩
-  apply pushout.hom_ext
+  ext
   · simp [← pushout.condition]
   · simp [pushout.condition]
 #align category_theory.limits.pushout_inl_iso_of_right_iso CategoryTheory.Limits.pushout_inl_iso_of_right_iso
@@ -1939,12 +1939,12 @@ theorem fst_eq_snd_of_mono_eq [Mono f] : (pullback.fst : pullback f f ⟶ _) = p
 
 @[simp]
 theorem pullbackSymmetry_hom_of_mono_eq [Mono f] : (pullbackSymmetry f f).hom = 𝟙 _ := by
-  apply pullback.hom_ext; simp [fst_eq_snd_of_mono_eq]; simp [fst_eq_snd_of_mono_eq]
+  ext; simp [fst_eq_snd_of_mono_eq]; simp [fst_eq_snd_of_mono_eq]
 #align category_theory.limits.pullback_symmetry_hom_of_mono_eq CategoryTheory.Limits.pullbackSymmetry_hom_of_mono_eq
 
 instance fst_iso_of_mono_eq [Mono f] : IsIso (pullback.fst : pullback f f ⟶ _) := by
   refine' ⟨⟨pullback.lift (𝟙 _) (𝟙 _) (by simp), _, by simp⟩⟩
-  apply pullback.hom_ext
+  ext
   · simp
   · simp [fst_eq_snd_of_mono_eq]
 #align category_theory.limits.fst_iso_of_mono_eq CategoryTheory.Limits.fst_iso_of_mono_eq
@@ -1973,7 +1973,7 @@ theorem inl_eq_inr_of_epi_eq [Epi f] : (pushout.inl : _ ⟶ pushout f f) = pusho
 
 @[simp]
 theorem pullback_symmetry_hom_of_epi_eq [Epi f] : (pushoutSymmetry f f).hom = 𝟙 _ := by
-  apply pushout.hom_ext <;> simp [inl_eq_inr_of_epi_eq]
+  ext <;> simp [inl_eq_inr_of_epi_eq]
 #align category_theory.limits.pullback_symmetry_hom_of_epi_eq CategoryTheory.Limits.pullback_symmetry_hom_of_epi_eq
 
 instance inl_iso_of_epi_eq [Epi f] : IsIso (pushout.inl : _ ⟶ pushout f f) := by
feat: port CategoryTheory.Limits.Shapes.KernelPair (#2871)
Diff
@@ -648,12 +648,28 @@ def ext {s t : PullbackCone f g} (i : s.pt ≅ t.pt) (w₁ : s.fst = i.hom ≫ t
   WalkingCospan.ext i w₁ w₂
 #align category_theory.limits.pullback_cone.ext CategoryTheory.Limits.PullbackCone.ext
 
+-- porting note: `IsLimit.lift` and the two following simp lemmas were introduced to ease the port
+/-- If `t` is a limit pullback cone over `f` and `g` and `h : W ⟶ X` and `k : W ⟶ Y` are such that
+    `h ≫ f = k ≫ g`, then we get `l : W ⟶ t.pt`, which satisfies `l ≫ fst t = h`
+    and `l ≫ snd t = k`, see `IsLimit.lift_fst` and `IsLimit.lift_snd`. -/
+def IsLimit.lift {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X) (k : W ⟶ Y)
+    (w : h ≫ f = k ≫ g) : W ⟶ t.pt :=
+  ht.lift <| PullbackCone.mk _ _ w
+
+@[reassoc (attr := simp)]
+lemma IsLimit.lift_fst {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X) (k : W ⟶ Y)
+    (w : h ≫ f = k ≫ g) : IsLimit.lift ht h k w ≫ fst t = h := ht.fac _ _
+
+@[reassoc (attr := simp)]
+lemma IsLimit.lift_snd {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X) (k : W ⟶ Y)
+    (w : h ≫ f = k ≫ g) : IsLimit.lift ht h k w ≫ snd t = k := ht.fac _ _
+
 /-- If `t` is a limit pullback cone over `f` and `g` and `h : W ⟶ X` and `k : W ⟶ Y` are such that
     `h ≫ f = k ≫ g`, then we have `l : W ⟶ t.pt` satisfying `l ≫ fst t = h` and `l ≫ snd t = k`.
     -/
 def IsLimit.lift' {t : PullbackCone f g} (ht : IsLimit t) {W : C} (h : W ⟶ X) (k : W ⟶ Y)
     (w : h ≫ f = k ≫ g) : { l : W ⟶ t.pt // l ≫ fst t = h ∧ l ≫ snd t = k } :=
-  ⟨ht.lift <| PullbackCone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
+  ⟨IsLimit.lift ht h k w, by simp⟩
 #align category_theory.limits.pullback_cone.is_limit.lift' CategoryTheory.Limits.PullbackCone.IsLimit.lift'
 
 /-- This is a more convenient formulation to show that a `PullbackCone` constructed using
@@ -866,12 +882,30 @@ theorem IsColimit.hom_ext {t : PushoutCocone f g} (ht : IsColimit t) {W : C} {k
   ht.hom_ext <| coequalizer_ext _ h₀ h₁
 #align category_theory.limits.pushout_cocone.is_colimit.hom_ext CategoryTheory.Limits.PushoutCocone.IsColimit.hom_ext
 
+-- porting note: `IsColimit.desc` and the two following simp lemmas were introduced to ease the port
+/-- If `t` is a colimit pushout cocone over `f` and `g` and `h : Y ⟶ W` and `k : Z ⟶ W` are
+    morphisms satisfying `f ≫ h = g ≫ k`, then we have a factorization `l : t.pt ⟶ W` such that
+    `inl t ≫ l = h` and `inr t ≫ l = k`, see `IsColimit.inl_desc` and `IsColimit.inr_desc`-/
+def IsColimit.desc {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y ⟶ W) (k : Z ⟶ W)
+    (w : f ≫ h = g ≫ k) : t.pt ⟶ W :=
+  ht.desc (PushoutCocone.mk _ _ w)
+
+@[reassoc (attr := simp)]
+lemma IsColimit.inl_desc {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y ⟶ W) (k : Z ⟶ W)
+    (w : f ≫ h = g ≫ k) : inl t ≫ IsColimit.desc ht h k w = h :=
+  ht.fac _ _
+
+@[reassoc (attr := simp)]
+lemma IsColimit.inr_desc {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y ⟶ W) (k : Z ⟶ W)
+    (w : f ≫ h = g ≫ k) : inr t ≫ IsColimit.desc ht h k w = k :=
+  ht.fac _ _
+
 /-- If `t` is a colimit pushout cocone over `f` and `g` and `h : Y ⟶ W` and `k : Z ⟶ W` are
     morphisms satisfying `f ≫ h = g ≫ k`, then we have a factorization `l : t.pt ⟶ W` such that
     `inl t ≫ l = h` and `inr t ≫ l = k`. -/
 def IsColimit.desc' {t : PushoutCocone f g} (ht : IsColimit t) {W : C} (h : Y ⟶ W) (k : Z ⟶ W)
     (w : f ≫ h = g ≫ k) : { l : t.pt ⟶ W // inl t ≫ l = h ∧ inr t ≫ l = k } :=
-  ⟨ht.desc <| PushoutCocone.mk _ _ w, ht.fac _ _, ht.fac _ _⟩
+  ⟨IsColimit.desc ht h k w, by simp⟩
 #align category_theory.limits.pushout_cocone.is_colimit.desc' CategoryTheory.Limits.PushoutCocone.IsColimit.desc'
 
 theorem epi_inr_of_is_pushout_of_epi {t : PushoutCocone f g} (ht : IsColimit t) [Epi f] :
chore: strip trailing spaces in lean files (#2828)

vscode is already configured by .vscode/settings.json to trim these on save. It's not clear how they've managed to stick around.

By doing this all in one PR now, it avoids getting random whitespace diffs in PRs later.

This was done with a regex search in vscode,

image

Diff
@@ -1681,7 +1681,7 @@ theorem pullbackConeOfRightIso_π_app_left : (pullbackConeOfRightIso f g).π.app
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_left CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left
 
 @[simp]
-theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g 
+theorem pullbackConeOfRightIso_π_app_right : (pullbackConeOfRightIso f g).π.app right = f ≫ inv g
   := rfl
 #align category_theory.limits.pullback_cone_of_right_iso_π_app_right CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right
 
feat: port CategoryTheory.Limits.Shapes.Pullbacks (#2522)

Co-authored-by: adamtopaz <github@adamtopaz.com>

Dependencies 109

110 files ported (100.0%)
44407 lines ported (100.0%)

All dependencies are ported!