category_theory.sites.whiskeringMathlib.CategoryTheory.Sites.Whiskering

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -132,7 +132,6 @@ end GrothendieckTopology.Cover
 
 variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
 
-#print CategoryTheory.Presheaf.IsSheaf.comp /-
 theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
     Presheaf.IsSheaf J (P ⋙ F) :=
   by
@@ -143,7 +142,6 @@ theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
   replace h := limits.is_limit.of_iso_limit h (S.map_multifork F P)
   exact ⟨limits.is_limit.postcompose_hom_equiv (S.multicospan_comp F P) _ h⟩
 #align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
--/
 
 variable (J)
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
 -/
-import Mathbin.CategoryTheory.Sites.Sheaf
+import CategoryTheory.Sites.Sheaf
 
 #align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Sites.Sheaf
 
+#align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
+
 /-!
 > THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
 > Any changes to this file require a corresponding PR to mathlib4.
Diff
@@ -68,42 +68,55 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
 #align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
 -/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left /-
 @[simp]
 theorem multicospanComp_app_left (a) :
     (S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right /-
 @[simp]
 theorem multicospanComp_app_right (b) :
     (S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left /-
 @[simp]
 theorem multicospanComp_hom_app_left (a) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right /-
 @[simp]
 theorem multicospanComp_hom_app_right (b) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left /-
 @[simp]
 theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right /-
 @[simp]
 theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
+-/
 
+#print CategoryTheory.GrothendieckTopology.Cover.mapMultifork /-
 /-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
 respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
 to the multifork associated to `S` and `P ⋙ F`. -/
@@ -116,6 +129,7 @@ def mapMultifork :
       · dsimp; simpa
       · dsimp; simp; dsimp [multifork.of_ι]; simpa)
 #align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultifork
+-/
 
 end GrothendieckTopology.Cover
 
Diff
@@ -125,7 +125,7 @@ variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.ind
 theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
     Presheaf.IsSheaf J (P ⋙ F) :=
   by
-  rw [presheaf.is_sheaf_iff_multifork] at hP⊢
+  rw [presheaf.is_sheaf_iff_multifork] at hP ⊢
   intro X S
   obtain ⟨h⟩ := hP X S
   replace h := is_limit_of_preserves F h
Diff
@@ -68,63 +68,42 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
 #align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
 -/
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_app_left (a) :
     (S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_app_right (b) :
     (S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_left (a) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_right (b) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
 
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
 
-/- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
 /-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
 respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
 to the multifork associated to `S` and `P ⋙ F`. -/
Diff
@@ -134,12 +134,8 @@ def mapMultifork :
   Cones.ext (eqToIso rfl)
     (by
       rintro (a | b)
-      · dsimp
-        simpa
-      · dsimp
-        simp
-        dsimp [multifork.of_ι]
-        simpa)
+      · dsimp; simpa
+      · dsimp; simp; dsimp [multifork.of_ι]; simpa)
 #align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultifork
 
 end GrothendieckTopology.Cover
Diff
@@ -69,10 +69,7 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
 -/
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_app_left (a) :
@@ -81,10 +78,7 @@ theorem multicospanComp_app_left (a) :
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_app_right (b) :
@@ -93,10 +87,7 @@ theorem multicospanComp_app_right (b) :
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_left (a) :
@@ -105,10 +96,7 @@ theorem multicospanComp_hom_app_left (a) :
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_right (b) :
@@ -117,10 +105,7 @@ theorem multicospanComp_hom_app_right (b) :
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
@@ -129,10 +114,7 @@ theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X)
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
 
 /- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
@@ -141,10 +123,7 @@ theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
 
 /- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Functor.obj.{max u1 u2, max u1 u2, max (max u2 u1) u4 u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u2 u1, max (max (max u2 u4) u1) u2 u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 F (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (Prefunctor.obj.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)))) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
 /-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
 respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
Diff
@@ -4,13 +4,16 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
 
 ! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit 9f9015c645d85695581237cc761981036be8bd37
+! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Sites.Sheaf
 
 /-!
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 
 In this file we construct the functor `Sheaf J A ⥤ Sheaf J B` between sheaf categories
 obtained by composition with a functor `F : A ⥤ B`.
Diff
@@ -48,6 +48,7 @@ namespace GrothendieckTopology.Cover
 
 variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X)
 
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp /-
 /-- The multicospan associated to a cover `S : J.cover X` and a presheaf of the form `P ⋙ F`
 is isomorphic to the composition of the multicospan associated to `S` and `P`,
 composed with `F`. -/
@@ -62,43 +63,86 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
       any_goals dsimp; erw [Functor.map_id, Functor.map_id, category.id_comp]
       any_goals dsimp; erw [category.comp_id, category.id_comp]; rfl)
 #align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
+-/
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_app_left (a) :
     (S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_app_right (b) :
     (S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_left (a) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_app_right (b) :
     (S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
 
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
 @[simp]
 theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
     (S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
   rfl
 #align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
 
+/- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Functor.obj.{max u1 u2, max u1 u2, max (max u2 u1) u4 u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u2 u1, max (max (max u2 u4) u1) u2 u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 F (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (Prefunctor.obj.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)))) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
 /-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
 respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
 to the multifork associated to `S` and `P ⋙ F`. -/
@@ -120,6 +164,7 @@ end GrothendieckTopology.Cover
 
 variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
 
+#print CategoryTheory.Presheaf.IsSheaf.comp /-
 theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
     Presheaf.IsSheaf J (P ⋙ F) :=
   by
@@ -130,9 +175,11 @@ theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
   replace h := limits.is_limit.of_iso_limit h (S.map_multifork F P)
   exact ⟨limits.is_limit.postcompose_hom_equiv (S.multicospan_comp F P) _ h⟩
 #align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
+-/
 
 variable (J)
 
+#print CategoryTheory.sheafCompose /-
 /-- Composing a sheaf with a functor preserving the appropriate limits yields a functor
 between sheaf categories. -/
 @[simps]
@@ -143,6 +190,7 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B
   map_id' G := Sheaf.Hom.ext _ _ <| whiskerRight_id _
   map_comp' G H W f g := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
 #align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+-/
 
 end CategoryTheory
 

Changes in mathlib4

mathlib3
mathlib4
feat(CategoryTheory): whiskering a fully faithful functor is full (#12527)

We already had that whiskering by a faithful functor is faithful. This PR also adds the relevant Full and Faithful instances for the sheaf version of whiskering, (sheafCompose).

Diff
@@ -53,6 +53,18 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B where
 set_option linter.uppercaseLean3 false in
 #align category_theory.Sheaf_compose CategoryTheory.sheafCompose
 
+instance [F.Faithful] : (sheafCompose J F ⋙ sheafToPresheaf _ _).Faithful :=
+  show (sheafToPresheaf _ _ ⋙ (whiskeringRight Cᵒᵖ A B).obj F).Faithful from inferInstance
+
+instance [F.Faithful] [F.Full] : (sheafCompose J F ⋙ sheafToPresheaf _ _).Full :=
+  show (sheafToPresheaf _ _ ⋙ (whiskeringRight Cᵒᵖ A B).obj F).Full from inferInstance
+
+instance [F.Faithful] : (sheafCompose J F).Faithful :=
+  Functor.Faithful.of_comp (sheafCompose J F) (sheafToPresheaf _ _)
+
+instance [F.Full] [F.Faithful] : (sheafCompose J F).Full :=
+  Functor.Full.of_comp_faithful (sheafCompose J F) (sheafToPresheaf _ _)
+
 variable {F G}
 
 /--
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -30,15 +30,10 @@ open CategoryTheory.Limits
 universe v₁ v₂ v₃ u₁ u₂ u₃
 
 variable {C : Type u₁} [Category.{v₁} C]
-
 variable {A : Type u₂} [Category.{v₂} A]
-
 variable {B : Type u₃} [Category.{v₃} B]
-
 variable (J : GrothendieckTopology C)
-
 variable {U : C} (R : Presieve U)
-
 variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
 
 /-- Describes the property of a functor to "preserve sheaves". -/
@@ -77,7 +72,6 @@ lemma sheafCompose_comp :
 namespace GrothendieckTopology.Cover
 
 variable (F G) {J}
-
 variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.Cover X)
 
 /-- The multicospan associated to a cover `S : J.Cover X` and a presheaf of the form `P ⋙ F`
feat(CategoryTheory): a version of sheafCompose for functors preserving smaller limits (#8235)

Introduces a new typeclass GrothendieckTopology.HasSheafCompose F which says that a sheaf postcomposed with the functor F is still a sheaf. The previous API proved that a functor preserving certain limits has this property, this PR also adds a proof that a functor preserving limits of a smaller size has this property.

Diff
@@ -35,14 +35,49 @@ variable {A : Type u₂} [Category.{v₂} A]
 
 variable {B : Type u₃} [Category.{v₃} B]
 
-variable {J : GrothendieckTopology C}
+variable (J : GrothendieckTopology C)
 
 variable {U : C} (R : Presieve U)
 
 variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
 
+/-- Describes the property of a functor to "preserve sheaves". -/
+class GrothendieckTopology.HasSheafCompose : Prop where
+  /-- For every sheaf `P`, `P ⋙ F` is a sheaf. -/
+  isSheaf (P : Cᵒᵖ ⥤ A) (hP : Presheaf.IsSheaf J P) : Presheaf.IsSheaf J (P ⋙ F)
+
+variable [J.HasSheafCompose F] [J.HasSheafCompose G] [J.HasSheafCompose H]
+
+/-- Composing a functor which `HasSheafCompose`, yields a functor between sheaf categories. -/
+@[simps]
+def sheafCompose : Sheaf J A ⥤ Sheaf J B where
+  obj G := ⟨G.val ⋙ F, GrothendieckTopology.HasSheafCompose.isSheaf G.val G.2⟩
+  map η := ⟨whiskerRight η.val _⟩
+  map_id _ := Sheaf.Hom.ext _ _ <| whiskerRight_id _
+  map_comp _ _ := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
+set_option linter.uppercaseLean3 false in
+#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+
+variable {F G}
+
+/--
+If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
+`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+-/
+def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
+  app := fun X => .mk <| whiskerLeft _ η
+
+@[simp]
+lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+
+@[simp]
+lemma sheafCompose_comp :
+    sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+
 namespace GrothendieckTopology.Cover
 
+variable (F G) {J}
+
 variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.Cover X)
 
 /-- The multicospan associated to a cover `S : J.Cover X` and a presheaf of the form `P ⋙ F`
@@ -114,47 +149,30 @@ def mapMultifork :
 
 end GrothendieckTopology.Cover
 
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan G]
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan H]
-
-theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
-    Presheaf.IsSheaf J (P ⋙ F) := by
-  rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
-  intro X S
-  obtain ⟨h⟩ := hP X S
-  replace h := isLimitOfPreserves F h
-  replace h := Limits.IsLimit.ofIsoLimit h (S.mapMultifork F P)
-  exact ⟨Limits.IsLimit.postcomposeHomEquiv (S.multicospanComp F P) _ h⟩
-#align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
-
-variable (J)
-
-/-- Composing a sheaf with a functor preserving the appropriate limits yields a functor
-between sheaf categories. -/
-@[simps]
-def sheafCompose : Sheaf J A ⥤ Sheaf J B where
-  obj G := ⟨G.val ⋙ F, Presheaf.IsSheaf.comp _ G.2⟩
-  map η := ⟨whiskerRight η.val _⟩
-  map_id _ := Sheaf.Hom.ext _ _ <| whiskerRight_id _
-  map_comp _ _ := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
-set_option linter.uppercaseLean3 false in
-#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
-
-variable {F G}
-
 /--
-If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
-`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+Composing a sheaf with a functor preserving the limit of `(S.index P).multicospan` yields a functor
+between sheaf categories.
 -/
-def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
-  app := fun X => .mk <| whiskerLeft _ η
+instance hasSheafCompose_of_preservesMulticospan (F : A ⥤ B)
+    [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F] :
+    J.HasSheafCompose F where
+  isSheaf P hP := by
+    rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
+    intro X S
+    obtain ⟨h⟩ := hP X S
+    replace h := isLimitOfPreserves F h
+    replace h := Limits.IsLimit.ofIsoLimit h (S.mapMultifork F P)
+    exact ⟨Limits.IsLimit.postcomposeHomEquiv (S.multicospanComp F P) _ h⟩
 
-@[simp]
-lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+/--
+Composing a sheaf with a functor preserving limits of the same size as the hom sets in `C` yields a
+functor between sheaf categories.
 
-@[simp]
-lemma sheafCompose_comp :
-    sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+Note: the size of the limit that `F` is required to preserve in
+`hasSheafCompose_of_preservesMulticospan` is in general larger than this.
+-/
+instance hasSheafCompose_of_preservesLimitsOfSize [PreservesLimitsOfSize.{v₁, max u₁ v₁} F] :
+    J.HasSheafCompose F where
+  isSheaf _ hP := Presheaf.isSheaf_comp_of_isSheaf J _ F hP
 
 end CategoryTheory
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -155,6 +155,6 @@ lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
 
 @[simp]
 lemma sheafCompose_comp :
-  sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+    sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
 
 end CategoryTheory
chore: more universe generalisations / fixes (#5659)

There are changes of two types: first I add some .{w} in some declarations to ensure that universes are in the right order. Secondly I generalise some results from Category.{max u1 v1, u2} to Category.{v2, u2}.

From the Copenhagen workshop.

Diff
@@ -27,13 +27,13 @@ namespace CategoryTheory
 
 open CategoryTheory.Limits
 
-universe v₁ v₂ u₁ u₂ u₃
+universe v₁ v₂ v₃ u₁ u₂ u₃
 
 variable {C : Type u₁} [Category.{v₁} C]
 
-variable {A : Type u₂} [Category.{max v₁ u₁} A]
+variable {A : Type u₂} [Category.{v₂} A]
 
-variable {B : Type u₃} [Category.{max v₁ u₁} B]
+variable {B : Type u₃} [Category.{v₃} B]
 
 variable {J : GrothendieckTopology C}
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit 9f9015c645d85695581237cc761981036be8bd37
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Sites.Sheaf
 
+#align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"9f9015c645d85695581237cc761981036be8bd37"
+
 /-!
 
 In this file we construct the functor `Sheaf J A ⥤ Sheaf J B` between sheaf categories
feat: sheafCompose_map (#5613)
Diff
@@ -21,7 +21,7 @@ sheaf condition.
 
 The functor between sheaf categories is called `sheafCompose J F`.
 Given a natural transformation `η : F ⟶ G`, we obtain a natural transformation
-`sheafCompose J F ⟶ sheafCompose J G`, which we call `sheafCompose_map J η` (TODO).
+`sheafCompose J F ⟶ sheafCompose J G`, which we call `sheafCompose_map J η`.
 
 -/
 
@@ -42,7 +42,7 @@ variable {J : GrothendieckTopology C}
 
 variable {U : C} (R : Presieve U)
 
-variable (F : A ⥤ B)
+variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
 
 namespace GrothendieckTopology.Cover
 
@@ -118,6 +118,8 @@ def mapMultifork :
 end GrothendieckTopology.Cover
 
 variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
+variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan G]
+variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan H]
 
 theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
     Presheaf.IsSheaf J (P ⋙ F) := by
@@ -142,4 +144,20 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B where
 set_option linter.uppercaseLean3 false in
 #align category_theory.Sheaf_compose CategoryTheory.sheafCompose
 
+variable {F G}
+
+/--
+If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
+`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+-/
+def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
+  app := fun X => .mk <| whiskerLeft _ η
+
+@[simp]
+lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+
+@[simp]
+lemma sheafCompose_comp :
+  sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+
 end CategoryTheory
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -121,7 +121,7 @@ variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.ind
 
 theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
     Presheaf.IsSheaf J (P ⋙ F) := by
-  rw [Presheaf.isSheaf_iff_multifork] at hP⊢
+  rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
   intro X S
   obtain ⟨h⟩ := hP X S
   replace h := isLimitOfPreserves F h
feat: port CategoryTheory.Sites.Whiskering (#3461)

Dependencies 3 + 314

315 files ported (99.1%)
131291 lines ported (99.2%)
Show graph

The unported dependencies are