category_theory.sites.whiskering
⟷
Mathlib.CategoryTheory.Sites.Whiskering
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -132,7 +132,6 @@ end GrothendieckTopology.Cover
variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
-#print CategoryTheory.Presheaf.IsSheaf.comp /-
theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
Presheaf.IsSheaf J (P ⋙ F) :=
by
@@ -143,7 +142,6 @@ theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
replace h := limits.is_limit.of_iso_limit h (S.map_multifork F P)
exact ⟨limits.is_limit.postcompose_hom_equiv (S.multicospan_comp F P) _ h⟩
#align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
--/
variable (J)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,7 +3,7 @@ Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-/
-import Mathbin.CategoryTheory.Sites.Sheaf
+import CategoryTheory.Sites.Sheaf
#align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,14 +2,11 @@
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.CategoryTheory.Sites.Sheaf
+#align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
+
/-!
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -68,42 +68,55 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
#align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left /-
@[simp]
theorem multicospanComp_app_left (a) :
(S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right /-
@[simp]
theorem multicospanComp_app_right (b) :
(S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left /-
@[simp]
theorem multicospanComp_hom_app_left (a) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right /-
@[simp]
theorem multicospanComp_hom_app_right (b) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left /-
@[simp]
theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right /-
@[simp]
theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
+-/
+#print CategoryTheory.GrothendieckTopology.Cover.mapMultifork /-
/-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
to the multifork associated to `S` and `P ⋙ F`. -/
@@ -116,6 +129,7 @@ def mapMultifork :
· dsimp; simpa
· dsimp; simp; dsimp [multifork.of_ι]; simpa)
#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultifork
+-/
end GrothendieckTopology.Cover
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -125,7 +125,7 @@ variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.ind
theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
Presheaf.IsSheaf J (P ⋙ F) :=
by
- rw [presheaf.is_sheaf_iff_multifork] at hP⊢
+ rw [presheaf.is_sheaf_iff_multifork] at hP ⊢
intro X S
obtain ⟨h⟩ := hP X S
replace h := is_limit_of_preserves F h
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -68,63 +68,42 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
#align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
-/
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
@[simp]
theorem multicospanComp_app_left (a) :
(S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
@[simp]
theorem multicospanComp_app_right (b) :
(S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_app_left (a) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_app_right (b) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
-/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
-/- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
/-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
to the multifork associated to `S` and `P ⋙ F`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -134,12 +134,8 @@ def mapMultifork :
Cones.ext (eqToIso rfl)
(by
rintro (a | b)
- · dsimp
- simpa
- · dsimp
- simp
- dsimp [multifork.of_ι]
- simpa)
+ · dsimp; simpa
+ · dsimp; simp; dsimp [multifork.of_ι]; simpa)
#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultifork
end GrothendieckTopology.Cover
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -69,10 +69,7 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
-/
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
@[simp]
theorem multicospanComp_app_left (a) :
@@ -81,10 +78,7 @@ theorem multicospanComp_app_left (a) :
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
@[simp]
theorem multicospanComp_app_right (b) :
@@ -93,10 +87,7 @@ theorem multicospanComp_app_right (b) :
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_app_left (a) :
@@ -105,10 +96,7 @@ theorem multicospanComp_hom_app_left (a) :
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_app_right (b) :
@@ -117,10 +105,7 @@ theorem multicospanComp_hom_app_right (b) :
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
@@ -129,10 +114,7 @@ theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X)
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
@@ -141,10 +123,7 @@ theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
/- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Functor.obj.{max u1 u2, max u1 u2, max (max u2 u1) u4 u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u2 u1, max (max (max u2 u4) u1) u2 u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 F (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (Prefunctor.obj.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)))) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+<too large>
Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
/-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
mathlib commit https://github.com/leanprover-community/mathlib/commit/cd8fafa2fac98e1a67097e8a91ad9901cfde48af
@@ -4,13 +4,16 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit 9f9015c645d85695581237cc761981036be8bd37
+! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.CategoryTheory.Sites.Sheaf
/-!
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
In this file we construct the functor `Sheaf J A ⥤ Sheaf J B` between sheaf categories
obtained by composition with a functor `F : A ⥤ B`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/17ad94b4953419f3e3ce3e77da3239c62d1d09f0
@@ -48,6 +48,7 @@ namespace GrothendieckTopology.Cover
variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X)
+#print CategoryTheory.GrothendieckTopology.Cover.multicospanComp /-
/-- The multicospan associated to a cover `S : J.cover X` and a presheaf of the form `P ⋙ F`
is isomorphic to the composition of the multicospan associated to `S` and `P`,
composed with `F`. -/
@@ -62,43 +63,86 @@ def multicospanComp : (S.index (P ⋙ F)).multicospan ≅ (S.index P).multicospa
any_goals dsimp; erw [Functor.map_id, Functor.map_id, category.id_comp]
any_goals dsimp; erw [category.comp_id, category.id_comp]; rfl)
#align category_theory.grothendieck_topology.cover.multicospan_comp CategoryTheory.GrothendieckTopology.Cover.multicospanComp
+-/
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_leftₓ'. -/
@[simp]
theorem multicospanComp_app_left (a) :
(S.multicospanComp F P).app (WalkingMulticospan.left a) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_left
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (CategoryTheory.Iso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (CategoryTheory.Iso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.Iso.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToIso.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_rightₓ'. -/
@[simp]
theorem multicospanComp_app_right (b) :
(S.multicospanComp F P).app (WalkingMulticospan.right b) = eqToIso rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_app_right
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_app_left (a) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_left
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_app_right (b) :
(S.multicospanComp F P).Hom.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_app_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_app_right
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (a : CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.left.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) a))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_leftₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_left (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (a) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.left a) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_left CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_left
+/- warning: category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right -> CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{succ (max u1 u2)} (Quiver.Hom.{succ (max u1 u2), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, u4} B (CategoryTheory.Category.toCategoryStruct.{max u1 u2, u4} B _inst_3)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u1 u2, u4} B _inst_3 (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (CategoryTheory.Functor.obj.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X) (b : CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))), Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), u4} B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))) (CategoryTheory.NatTrans.app.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Iso.inv.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (CategoryTheory.eqToHom.{max u2 u1, u4} B _inst_3 (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b)) (rfl.{succ u4} B (Prefunctor.obj.{succ (max u2 u1), succ (max u2 u1), max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) B (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, u4} B (CategoryTheory.Category.toCategoryStruct.{max u2 u1, u4} B _inst_3)) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.WalkingMulticospan.right.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) b))))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_rightₓ'. -/
@[simp]
theorem multicospanComp_hom_inv_right (P : Cᵒᵖ ⥤ A) {X : C} (S : J.cover X) (b) :
(S.multicospanComp F P).inv.app (WalkingMulticospan.right b) = eqToHom rfl :=
rfl
#align category_theory.grothendieck_topology.cover.multicospan_comp_hom_inv_right CategoryTheory.GrothendieckTopology.Cover.multicospanComp_hom_inv_right
+/- warning: category_theory.grothendieck_topology.cover.map_multifork -> CategoryTheory.GrothendieckTopology.Cover.mapMultifork is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u1 u2, max u1 u2, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u1 u2, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Functor.obj.{max u1 u2, max u1 u2, max (max u2 u1) u4 u1 u2, max (max u2 u1) u4 u1 u2} (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max (max u2 u1) u1 u2, max (max u2 u1) (max u1 u2) (max u2 u1) u4} (CategoryTheory.Functor.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u1 u2, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u1 u2, max u1 u2, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.CategoryTheory.smallCategory.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u1 u2, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u1 u2, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u1 u2, max u1 u2, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] {A : Type.{u3}} [_inst_2 : CategoryTheory.Category.{max u1 u2, u3} A] {B : Type.{u4}} [_inst_3 : CategoryTheory.Category.{max u1 u2, u4} B] {J : CategoryTheory.GrothendieckTopology.{u1, u2} C _inst_1} (F : CategoryTheory.Functor.{max u2 u1, max u2 u1, u3, u4} A _inst_2 B _inst_3) (P : CategoryTheory.Functor.{u1, max u2 u1, u2, u3} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2) {X : C} (S : CategoryTheory.GrothendieckTopology.Cover.{u1, u2} C _inst_1 J X), CategoryTheory.Iso.{max u2 u1, max (max (max u2 u4) u1) u2 u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Functor.mapCone.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u3} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P))) A _inst_2 B _inst_3 F (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) (Prefunctor.obj.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)))) (CategoryTheory.Functor.toPrefunctor.{max u2 u1, max u2 u1, max (max u2 u4) u1, max (max u2 u4) u1} (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.Cone.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cone.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F)) (CategoryTheory.Limits.Cones.postcompose.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.Iso.hom.{max u2 u1, max (max u2 u4) u1} (CategoryTheory.Functor.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Functor.category.{max u2 u1, max u2 u1, max u2 u1, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) B _inst_3) (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u4, max u2 u1} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Functor.comp.{max u2 u1, max u2 u1, max u2 u1, max u2 u1, u3, u4} (CategoryTheory.Limits.WalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) (CategoryTheory.Limits.WalkingMulticospan.instSmallCategoryWalkingMulticospan.{max u2 u1} (CategoryTheory.Limits.MulticospanIndex.L.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.R.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.fstTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F))) (CategoryTheory.Limits.MulticospanIndex.sndTo.{max u2 u1, max u2 u1, u4} B _inst_3 (CategoryTheory.GrothendieckTopology.Cover.index.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))) A _inst_2 B _inst_3 (CategoryTheory.Limits.MulticospanIndex.multicospan.{max u2 u1, u3, max u2 u1} A _inst_2 (CategoryTheory.GrothendieckTopology.Cover.index.{u3, u1, u2} C _inst_1 X J A _inst_2 S P)) F) (CategoryTheory.GrothendieckTopology.Cover.multicospanComp.{u1, u2, u3, u4} C _inst_1 A _inst_2 B _inst_3 J F P X S)))) (CategoryTheory.GrothendieckTopology.Cover.multifork.{u4, u1, u2} C _inst_1 X J B _inst_3 S (CategoryTheory.Functor.comp.{u1, max u2 u1, max u2 u1, u2, u3, u4} (Opposite.{succ u2} C) (CategoryTheory.Category.opposite.{u1, u2} C _inst_1) A _inst_2 B _inst_3 P F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.grothendieck_topology.cover.map_multifork CategoryTheory.GrothendieckTopology.Cover.mapMultiforkₓ'. -/
/-- Mapping the multifork associated to a cover `S : J.cover X` and a presheaf `P` with
respect to a functor `F` is isomorphic (upto a natural isomorphism of the underlying functors)
to the multifork associated to `S` and `P ⋙ F`. -/
@@ -120,6 +164,7 @@ end GrothendieckTopology.Cover
variable [∀ (X : C) (S : J.cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
+#print CategoryTheory.Presheaf.IsSheaf.comp /-
theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
Presheaf.IsSheaf J (P ⋙ F) :=
by
@@ -130,9 +175,11 @@ theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
replace h := limits.is_limit.of_iso_limit h (S.map_multifork F P)
exact ⟨limits.is_limit.postcompose_hom_equiv (S.multicospan_comp F P) _ h⟩
#align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
+-/
variable (J)
+#print CategoryTheory.sheafCompose /-
/-- Composing a sheaf with a functor preserving the appropriate limits yields a functor
between sheaf categories. -/
@[simps]
@@ -143,6 +190,7 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B
map_id' G := Sheaf.Hom.ext _ _ <| whiskerRight_id _
map_comp' G H W f g := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+-/
end CategoryTheory
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
We already had that whiskering by a faithful functor is faithful. This PR also adds the relevant Full
and Faithful
instances for the sheaf version of whiskering, (sheafCompose
).
@@ -53,6 +53,18 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B where
set_option linter.uppercaseLean3 false in
#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+instance [F.Faithful] : (sheafCompose J F ⋙ sheafToPresheaf _ _).Faithful :=
+ show (sheafToPresheaf _ _ ⋙ (whiskeringRight Cᵒᵖ A B).obj F).Faithful from inferInstance
+
+instance [F.Faithful] [F.Full] : (sheafCompose J F ⋙ sheafToPresheaf _ _).Full :=
+ show (sheafToPresheaf _ _ ⋙ (whiskeringRight Cᵒᵖ A B).obj F).Full from inferInstance
+
+instance [F.Faithful] : (sheafCompose J F).Faithful :=
+ Functor.Faithful.of_comp (sheafCompose J F) (sheafToPresheaf _ _)
+
+instance [F.Full] [F.Faithful] : (sheafCompose J F).Full :=
+ Functor.Full.of_comp_faithful (sheafCompose J F) (sheafToPresheaf _ _)
+
variable {F G}
/--
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -30,15 +30,10 @@ open CategoryTheory.Limits
universe v₁ v₂ v₃ u₁ u₂ u₃
variable {C : Type u₁} [Category.{v₁} C]
-
variable {A : Type u₂} [Category.{v₂} A]
-
variable {B : Type u₃} [Category.{v₃} B]
-
variable (J : GrothendieckTopology C)
-
variable {U : C} (R : Presieve U)
-
variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
/-- Describes the property of a functor to "preserve sheaves". -/
@@ -77,7 +72,6 @@ lemma sheafCompose_comp :
namespace GrothendieckTopology.Cover
variable (F G) {J}
-
variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.Cover X)
/-- The multicospan associated to a cover `S : J.Cover X` and a presheaf of the form `P ⋙ F`
sheafCompose
for functors preserving smaller limits (#8235)
Introduces a new typeclass GrothendieckTopology.HasSheafCompose F
which says that a sheaf postcomposed with the functor F
is still a sheaf. The previous API proved that a functor preserving certain limits has this property, this PR also adds a proof that a functor preserving limits of a smaller size has this property.
@@ -35,14 +35,49 @@ variable {A : Type u₂} [Category.{v₂} A]
variable {B : Type u₃} [Category.{v₃} B]
-variable {J : GrothendieckTopology C}
+variable (J : GrothendieckTopology C)
variable {U : C} (R : Presieve U)
variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
+/-- Describes the property of a functor to "preserve sheaves". -/
+class GrothendieckTopology.HasSheafCompose : Prop where
+ /-- For every sheaf `P`, `P ⋙ F` is a sheaf. -/
+ isSheaf (P : Cᵒᵖ ⥤ A) (hP : Presheaf.IsSheaf J P) : Presheaf.IsSheaf J (P ⋙ F)
+
+variable [J.HasSheafCompose F] [J.HasSheafCompose G] [J.HasSheafCompose H]
+
+/-- Composing a functor which `HasSheafCompose`, yields a functor between sheaf categories. -/
+@[simps]
+def sheafCompose : Sheaf J A ⥤ Sheaf J B where
+ obj G := ⟨G.val ⋙ F, GrothendieckTopology.HasSheafCompose.isSheaf G.val G.2⟩
+ map η := ⟨whiskerRight η.val _⟩
+ map_id _ := Sheaf.Hom.ext _ _ <| whiskerRight_id _
+ map_comp _ _ := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
+set_option linter.uppercaseLean3 false in
+#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+
+variable {F G}
+
+/--
+If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
+`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+-/
+def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
+ app := fun X => .mk <| whiskerLeft _ η
+
+@[simp]
+lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+
+@[simp]
+lemma sheafCompose_comp :
+ sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+
namespace GrothendieckTopology.Cover
+variable (F G) {J}
+
variable (P : Cᵒᵖ ⥤ A) {X : C} (S : J.Cover X)
/-- The multicospan associated to a cover `S : J.Cover X` and a presheaf of the form `P ⋙ F`
@@ -114,47 +149,30 @@ def mapMultifork :
end GrothendieckTopology.Cover
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan G]
-variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan H]
-
-theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
- Presheaf.IsSheaf J (P ⋙ F) := by
- rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
- intro X S
- obtain ⟨h⟩ := hP X S
- replace h := isLimitOfPreserves F h
- replace h := Limits.IsLimit.ofIsoLimit h (S.mapMultifork F P)
- exact ⟨Limits.IsLimit.postcomposeHomEquiv (S.multicospanComp F P) _ h⟩
-#align category_theory.presheaf.is_sheaf.comp CategoryTheory.Presheaf.IsSheaf.comp
-
-variable (J)
-
-/-- Composing a sheaf with a functor preserving the appropriate limits yields a functor
-between sheaf categories. -/
-@[simps]
-def sheafCompose : Sheaf J A ⥤ Sheaf J B where
- obj G := ⟨G.val ⋙ F, Presheaf.IsSheaf.comp _ G.2⟩
- map η := ⟨whiskerRight η.val _⟩
- map_id _ := Sheaf.Hom.ext _ _ <| whiskerRight_id _
- map_comp _ _ := Sheaf.Hom.ext _ _ <| whiskerRight_comp _ _ _
-set_option linter.uppercaseLean3 false in
-#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
-
-variable {F G}
-
/--
-If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
-`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+Composing a sheaf with a functor preserving the limit of `(S.index P).multicospan` yields a functor
+between sheaf categories.
-/
-def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
- app := fun X => .mk <| whiskerLeft _ η
+instance hasSheafCompose_of_preservesMulticospan (F : A ⥤ B)
+ [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F] :
+ J.HasSheafCompose F where
+ isSheaf P hP := by
+ rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
+ intro X S
+ obtain ⟨h⟩ := hP X S
+ replace h := isLimitOfPreserves F h
+ replace h := Limits.IsLimit.ofIsoLimit h (S.mapMultifork F P)
+ exact ⟨Limits.IsLimit.postcomposeHomEquiv (S.multicospanComp F P) _ h⟩
-@[simp]
-lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+/--
+Composing a sheaf with a functor preserving limits of the same size as the hom sets in `C` yields a
+functor between sheaf categories.
-@[simp]
-lemma sheafCompose_comp :
- sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+Note: the size of the limit that `F` is required to preserve in
+`hasSheafCompose_of_preservesMulticospan` is in general larger than this.
+-/
+instance hasSheafCompose_of_preservesLimitsOfSize [PreservesLimitsOfSize.{v₁, max u₁ v₁} F] :
+ J.HasSheafCompose F where
+ isSheaf _ hP := Presheaf.isSheaf_comp_of_isSheaf J _ F hP
end CategoryTheory
@@ -155,6 +155,6 @@ lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
@[simp]
lemma sheafCompose_comp :
- sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+ sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
end CategoryTheory
There are changes of two types: first I add some .{w}
in some declarations to ensure that universes are in the right order. Secondly I generalise some results from Category.{max u1 v1, u2}
to Category.{v2, u2}
.
From the Copenhagen workshop.
@@ -27,13 +27,13 @@ namespace CategoryTheory
open CategoryTheory.Limits
-universe v₁ v₂ u₁ u₂ u₃
+universe v₁ v₂ v₃ u₁ u₂ u₃
variable {C : Type u₁} [Category.{v₁} C]
-variable {A : Type u₂} [Category.{max v₁ u₁} A]
+variable {A : Type u₂} [Category.{v₂} A]
-variable {B : Type u₃} [Category.{max v₁ u₁} B]
+variable {B : Type u₃} [Category.{v₃} B]
variable {J : GrothendieckTopology C}
@@ -2,14 +2,11 @@
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module category_theory.sites.whiskering
-! leanprover-community/mathlib commit 9f9015c645d85695581237cc761981036be8bd37
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.CategoryTheory.Sites.Sheaf
+#align_import category_theory.sites.whiskering from "leanprover-community/mathlib"@"9f9015c645d85695581237cc761981036be8bd37"
+
/-!
In this file we construct the functor `Sheaf J A ⥤ Sheaf J B` between sheaf categories
@@ -21,7 +21,7 @@ sheaf condition.
The functor between sheaf categories is called `sheafCompose J F`.
Given a natural transformation `η : F ⟶ G`, we obtain a natural transformation
-`sheafCompose J F ⟶ sheafCompose J G`, which we call `sheafCompose_map J η` (TODO).
+`sheafCompose J F ⟶ sheafCompose J G`, which we call `sheafCompose_map J η`.
-/
@@ -42,7 +42,7 @@ variable {J : GrothendieckTopology C}
variable {U : C} (R : Presieve U)
-variable (F : A ⥤ B)
+variable (F G H : A ⥤ B) (η : F ⟶ G) (γ : G ⟶ H)
namespace GrothendieckTopology.Cover
@@ -118,6 +118,8 @@ def mapMultifork :
end GrothendieckTopology.Cover
variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan F]
+variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan G]
+variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.index P).multicospan H]
theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
Presheaf.IsSheaf J (P ⋙ F) := by
@@ -142,4 +144,20 @@ def sheafCompose : Sheaf J A ⥤ Sheaf J B where
set_option linter.uppercaseLean3 false in
#align category_theory.Sheaf_compose CategoryTheory.sheafCompose
+variable {F G}
+
+/--
+If `η : F ⟶ G` is a natural transformation then we obtain a morphism of functors
+`sheafCompose J F ⟶ sheafCompose J G` by whiskering with `η` on the level of presheaves.
+-/
+def sheafCompose_map : sheafCompose J F ⟶ sheafCompose J G where
+ app := fun X => .mk <| whiskerLeft _ η
+
+@[simp]
+lemma sheafCompose_id : sheafCompose_map (F := F) J (𝟙 _) = 𝟙 _ := rfl
+
+@[simp]
+lemma sheafCompose_comp :
+ sheafCompose_map J (η ≫ γ) = sheafCompose_map J η ≫ sheafCompose_map J γ := rfl
+
end CategoryTheory
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -121,7 +121,7 @@ variable [∀ (X : C) (S : J.Cover X) (P : Cᵒᵖ ⥤ A), PreservesLimit (S.ind
theorem Presheaf.IsSheaf.comp {P : Cᵒᵖ ⥤ A} (hP : Presheaf.IsSheaf J P) :
Presheaf.IsSheaf J (P ⋙ F) := by
- rw [Presheaf.isSheaf_iff_multifork] at hP⊢
+ rw [Presheaf.isSheaf_iff_multifork] at hP ⊢
intro X S
obtain ⟨h⟩ := hP X S
replace h := isLimitOfPreserves F h
The unported dependencies are