data.fin.tuple.monotoneMathlib.Data.Fin.Tuple.Monotone

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
 -/
-import Mathbin.Data.Fin.VecNotation
+import Data.Fin.VecNotation
 
 #align_import data.fin.tuple.monotone from "leanprover-community/mathlib"@"a11f9106a169dd302a285019e5165f8ab32ff433"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module data.fin.tuple.monotone
-! leanprover-community/mathlib commit a11f9106a169dd302a285019e5165f8ab32ff433
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Fin.VecNotation
 
+#align_import data.fin.tuple.monotone from "leanprover-community/mathlib"@"a11f9106a169dd302a285019e5165f8ab32ff433"
+
 /-!
 # Monotone finite sequences
 
Diff
@@ -24,49 +24,67 @@ open Set Fin Matrix Function
 
 variable {α : Type _}
 
+#print liftFun_vecCons /-
 theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
   simp only [lift_fun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_cast_succ,
     cast_succ_zero]
 #align lift_fun_vec_cons liftFun_vecCons
+-/
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
 
+#print strictMono_vecCons /-
 @[simp]
 theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono f :=
   liftFun_vecCons (· < ·)
 #align strict_mono_vec_cons strictMono_vecCons
+-/
 
+#print monotone_vecCons /-
 @[simp]
 theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f := by
   simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
+-/
 
+#print strictAnti_vecCons /-
 @[simp]
 theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti f :=
   liftFun_vecCons (· > ·)
 #align strict_anti_vec_cons strictAnti_vecCons
+-/
 
+#print antitone_vecCons /-
 @[simp]
 theorem antitone_vecCons : Antitone (vecCons a f) ↔ f 0 ≤ a ∧ Antitone f :=
   @monotone_vecCons αᵒᵈ _ _ _ _
 #align antitone_vec_cons antitone_vecCons
+-/
 
+#print StrictMono.vecCons /-
 theorem StrictMono.vecCons (hf : StrictMono f) (ha : a < f 0) : StrictMono (vecCons a f) :=
   strictMono_vecCons.2 ⟨ha, hf⟩
 #align strict_mono.vec_cons StrictMono.vecCons
+-/
 
+#print StrictAnti.vecCons /-
 theorem StrictAnti.vecCons (hf : StrictAnti f) (ha : f 0 < a) : StrictAnti (vecCons a f) :=
   strictAnti_vecCons.2 ⟨ha, hf⟩
 #align strict_anti.vec_cons StrictAnti.vecCons
+-/
 
+#print Monotone.vecCons /-
 theorem Monotone.vecCons (hf : Monotone f) (ha : a ≤ f 0) : Monotone (vecCons a f) :=
   monotone_vecCons.2 ⟨ha, hf⟩
 #align monotone.vec_cons Monotone.vecCons
+-/
 
+#print Antitone.vecCons /-
 theorem Antitone.vecCons (hf : Antitone f) (ha : f 0 ≤ a) : Antitone (vecCons a f) :=
   antitone_vecCons.2 ⟨ha, hf⟩
 #align antitone.vec_cons Antitone.vecCons
+-/
 
 example : Monotone ![1, 2, 2, 3] := by simp [Subsingleton.monotone]
 
Diff
@@ -24,27 +24,27 @@ open Set Fin Matrix Function
 
 variable {α : Type _}
 
-theorem lift_fun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
+theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
   simp only [lift_fun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_cast_succ,
     cast_succ_zero]
-#align lift_fun_vec_cons lift_fun_vecCons
+#align lift_fun_vec_cons liftFun_vecCons
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
 
 @[simp]
 theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono f :=
-  lift_fun_vecCons (· < ·)
+  liftFun_vecCons (· < ·)
 #align strict_mono_vec_cons strictMono_vecCons
 
 @[simp]
 theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f := by
-  simpa only [monotone_iff_forall_lt] using @lift_fun_vecCons α n (· ≤ ·) _ f a
+  simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
 
 @[simp]
 theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti f :=
-  lift_fun_vecCons (· > ·)
+  liftFun_vecCons (· > ·)
 #align strict_anti_vec_cons strictAnti_vecCons
 
 @[simp]
Diff
@@ -24,12 +24,6 @@ open Set Fin Matrix Function
 
 variable {α : Type _}
 
-/- warning: lift_fun_vec_cons -> lift_fun_vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {n : Nat} (r : α -> α -> Prop) [_inst_1 : IsTrans.{u1} α r] {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Relator.LiftFun.{1, 1, succ u1, succ u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α α (LT.lt.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.hasLt (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) r (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f) (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (r a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (Relator.LiftFun.{1, 1, succ u1, succ u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α α (LT.lt.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLt (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) r f f))
-but is expected to have type
-  forall {α : Type.{u1}} {n : Nat} (r : α -> α -> Prop) [_inst_1 : IsTrans.{u1} α r] {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (Relator.LiftFun.{1, 1, succ u1, succ u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α α (fun (x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.44 : Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.46 : Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LT.lt.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (instLTFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.44 x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.46) r (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f) (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (r a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) (Relator.LiftFun.{1, 1, succ u1, succ u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α α (fun (x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.85 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.87 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LT.lt.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLTFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.85 x._@.Mathlib.Data.Fin.Tuple.Monotone._hyg.87) r f f))
-Case conversion may be inaccurate. Consider using '#align lift_fun_vec_cons lift_fun_vecConsₓ'. -/
 theorem lift_fun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
   simp only [lift_fun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_cast_succ,
@@ -38,86 +32,38 @@ theorem lift_fun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f :
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
 
-/- warning: strict_mono_vec_cons -> strictMono_vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
-Case conversion may be inaccurate. Consider using '#align strict_mono_vec_cons strictMono_vecConsₓ'. -/
 @[simp]
 theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono f :=
   lift_fun_vecCons (· < ·)
 #align strict_mono_vec_cons strictMono_vecCons
 
-/- warning: monotone_vec_cons -> monotone_vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
-Case conversion may be inaccurate. Consider using '#align monotone_vec_cons monotone_vecConsₓ'. -/
 @[simp]
 theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f := by
   simpa only [monotone_iff_forall_lt] using @lift_fun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
 
-/- warning: strict_anti_vec_cons -> strictAnti_vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
-Case conversion may be inaccurate. Consider using '#align strict_anti_vec_cons strictAnti_vecConsₓ'. -/
 @[simp]
 theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti f :=
   lift_fun_vecCons (· > ·)
 #align strict_anti_vec_cons strictAnti_vecCons
 
-/- warning: antitone_vec_cons -> antitone_vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
-Case conversion may be inaccurate. Consider using '#align antitone_vec_cons antitone_vecConsₓ'. -/
 @[simp]
 theorem antitone_vecCons : Antitone (vecCons a f) ↔ f 0 ≤ a ∧ Antitone f :=
   @monotone_vecCons αᵒᵈ _ _ _ _
 #align antitone_vec_cons antitone_vecCons
 
-/- warning: strict_mono.vec_cons -> StrictMono.vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) -> (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
-Case conversion may be inaccurate. Consider using '#align strict_mono.vec_cons StrictMono.vecConsₓ'. -/
 theorem StrictMono.vecCons (hf : StrictMono f) (ha : a < f 0) : StrictMono (vecCons a f) :=
   strictMono_vecCons.2 ⟨ha, hf⟩
 #align strict_mono.vec_cons StrictMono.vecCons
 
-/- warning: strict_anti.vec_cons -> StrictAnti.vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) -> (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
-Case conversion may be inaccurate. Consider using '#align strict_anti.vec_cons StrictAnti.vecConsₓ'. -/
 theorem StrictAnti.vecCons (hf : StrictAnti f) (ha : f 0 < a) : StrictAnti (vecCons a f) :=
   strictAnti_vecCons.2 ⟨ha, hf⟩
 #align strict_anti.vec_cons StrictAnti.vecCons
 
-/- warning: monotone.vec_cons -> Monotone.vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) -> (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
-Case conversion may be inaccurate. Consider using '#align monotone.vec_cons Monotone.vecConsₓ'. -/
 theorem Monotone.vecCons (hf : Monotone f) (ha : a ≤ f 0) : Monotone (vecCons a f) :=
   monotone_vecCons.2 ⟨ha, hf⟩
 #align monotone.vec_cons Monotone.vecCons
 
-/- warning: antitone.vec_cons -> Antitone.vecCons is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) -> (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
-Case conversion may be inaccurate. Consider using '#align antitone.vec_cons Antitone.vecConsₓ'. -/
 theorem Antitone.vecCons (hf : Antitone f) (ha : f 0 ≤ a) : Antitone (vecCons a f) :=
   antitone_vecCons.2 ⟨ha, hf⟩
 #align antitone.vec_cons Antitone.vecCons
Diff
@@ -40,7 +40,7 @@ variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
 
 /- warning: strict_mono_vec_cons -> strictMono_vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
 Case conversion may be inaccurate. Consider using '#align strict_mono_vec_cons strictMono_vecConsₓ'. -/
@@ -51,7 +51,7 @@ theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono
 
 /- warning: monotone_vec_cons -> monotone_vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
 Case conversion may be inaccurate. Consider using '#align monotone_vec_cons monotone_vecConsₓ'. -/
@@ -62,7 +62,7 @@ theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f :
 
 /- warning: strict_anti_vec_cons -> strictAnti_vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
 Case conversion may be inaccurate. Consider using '#align strict_anti_vec_cons strictAnti_vecConsₓ'. -/
@@ -73,7 +73,7 @@ theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti
 
 /- warning: antitone_vec_cons -> antitone_vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, Iff (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f)) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, Iff (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f)) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f))
 Case conversion may be inaccurate. Consider using '#align antitone_vec_cons antitone_vecConsₓ'. -/
@@ -84,7 +84,7 @@ theorem antitone_vecCons : Antitone (vecCons a f) ↔ f 0 ≤ a ∧ Antitone f :
 
 /- warning: strict_mono.vec_cons -> StrictMono.vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (StrictMono.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) -> (StrictMono.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
 Case conversion may be inaccurate. Consider using '#align strict_mono.vec_cons StrictMono.vecConsₓ'. -/
@@ -94,7 +94,7 @@ theorem StrictMono.vecCons (hf : StrictMono f) (ha : a < f 0) : StrictMono (vecC
 
 /- warning: strict_anti.vec_cons -> StrictAnti.vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (StrictAnti.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) -> (StrictAnti.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
 Case conversion may be inaccurate. Consider using '#align strict_anti.vec_cons StrictAnti.vecConsₓ'. -/
@@ -104,7 +104,7 @@ theorem StrictAnti.vecCons (hf : StrictAnti f) (ha : f 0 < a) : StrictAnti (vecC
 
 /- warning: monotone.vec_cons -> Monotone.vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n))))))) -> (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (Monotone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n))))) -> (Monotone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
 Case conversion may be inaccurate. Consider using '#align monotone.vec_cons Monotone.vecConsₓ'. -/
@@ -114,7 +114,7 @@ theorem Monotone.vecCons (hf : Monotone f) (ha : a ≤ f 0) : Monotone (vecCons
 
 /- warning: antitone.vec_cons -> Antitone.vecCons is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> α} {a : α}, (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (NeZero.succ n)))))) a) -> (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.partialOrder (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a f))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {n : Nat} {f : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> α} {a : α}, (Antitone.{0, u1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) α (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instPartialOrderFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) _inst_1 f) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (f (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) 0 (NeZero.succ n)))) a) -> (Antitone.{0, u1} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) α (PartialOrder.toPreorder.{0} (Fin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.instPartialOrderFin (Nat.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) _inst_1 (Matrix.vecCons.{u1} α (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a f))
 Case conversion may be inaccurate. Consider using '#align antitone.vec_cons Antitone.vecConsₓ'. -/

Changes in mathlib4

mathlib3
mathlib4
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -36,12 +36,12 @@ theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f :
   simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
 
--- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
+-- Porting note (#10756): new lemma, in Lean3 would be proven by `Subsingleton.monotone`
 @[simp]
 theorem monotone_vecEmpty : Monotone ![a]
   | ⟨0, _⟩, ⟨0, _⟩, _ => le_refl _
 
--- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictMono`
+-- Porting note (#10756): new lemma, in Lean3 would be proven by `Subsingleton.strictMono`
 @[simp]
 theorem strictMono_vecEmpty : StrictMono ![a]
   | ⟨0, _⟩, ⟨0, _⟩, h => (irrefl _ h).elim
@@ -56,12 +56,12 @@ theorem antitone_vecCons : Antitone (vecCons a f) ↔ f 0 ≤ a ∧ Antitone f :
   @monotone_vecCons αᵒᵈ _ _ _ _
 #align antitone_vec_cons antitone_vecCons
 
--- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.antitone`
+-- Porting note (#10756): new lemma, in Lean3 would be proven by `Subsingleton.antitone`
 @[simp]
 theorem antitone_vecEmpty : Antitone (vecCons a vecEmpty)
   | ⟨0, _⟩, ⟨0, _⟩, _ => le_refl _
 
--- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictAnti`
+-- Porting note (#10756): new lemma, in Lean3 would be proven by `Subsingleton.strictAnti`
 @[simp]
 theorem strictAnti_vecEmpty : StrictAnti (vecCons a vecEmpty)
   | ⟨0, _⟩, ⟨0, _⟩, h => (irrefl _ h).elim
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -36,12 +36,12 @@ theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f :
   simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
 
---Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
+-- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
 @[simp]
 theorem monotone_vecEmpty : Monotone ![a]
   | ⟨0, _⟩, ⟨0, _⟩, _ => le_refl _
 
---Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictMono`
+-- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictMono`
 @[simp]
 theorem strictMono_vecEmpty : StrictMono ![a]
   | ⟨0, _⟩, ⟨0, _⟩, h => (irrefl _ h).elim
@@ -56,12 +56,12 @@ theorem antitone_vecCons : Antitone (vecCons a f) ↔ f 0 ≤ a ∧ Antitone f :
   @monotone_vecCons αᵒᵈ _ _ _ _
 #align antitone_vec_cons antitone_vecCons
 
---Porting note: new lemma, in Lean3 would be proven by `Subsingleton.antitone`
+-- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.antitone`
 @[simp]
 theorem antitone_vecEmpty : Antitone (vecCons a vecEmpty)
   | ⟨0, _⟩, ⟨0, _⟩, _ => le_refl _
 
---Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictAnti`
+-- Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictAnti`
 @[simp]
 theorem strictAnti_vecEmpty : StrictAnti (vecCons a vecEmpty)
   | ⟨0, _⟩, ⟨0, _⟩, h => (irrefl _ h).elim
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -38,12 +38,12 @@ theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f :
 
 --Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
 @[simp]
-theorem monotone_vecEmpty : Monotone (vecCons a vecEmpty)
+theorem monotone_vecEmpty : Monotone ![a]
   | ⟨0, _⟩, ⟨0, _⟩, _ => le_refl _
 
 --Porting note: new lemma, in Lean3 would be proven by `Subsingleton.strictMono`
 @[simp]
-theorem strictMono_vecEmpty : StrictMono (vecCons a vecEmpty)
+theorem strictMono_vecEmpty : StrictMono ![a]
   | ⟨0, _⟩, ⟨0, _⟩, h => (irrefl _ h).elim
 
 @[simp]
@@ -82,4 +82,5 @@ theorem Antitone.vecCons (hf : Antitone f) (ha : f 0 ≤ a) : Antitone (vecCons
   antitone_vecCons.2 ⟨ha, hf⟩
 #align antitone.vec_cons Antitone.vecCons
 
-example : Monotone ![1, 2, 2, 3] := by simp
+-- NOTE: was "by simp", but simp lemmas were not being used
+example : Monotone ![1, 2, 2, 3] := by decide
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -16,7 +16,7 @@ In this file we prove `simp` lemmas that allow to simplify propositions like `Mo
 
 open Set Fin Matrix Function
 
-variable {α : Type _}
+variable {α : Type*}
 
 theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module data.fin.tuple.monotone
-! leanprover-community/mathlib commit e3d9ab8faa9dea8f78155c6c27d62a621f4c152d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Fin.VecNotation
 
+#align_import data.fin.tuple.monotone from "leanprover-community/mathlib"@"e3d9ab8faa9dea8f78155c6c27d62a621f4c152d"
+
 /-!
 # Monotone finite sequences
 
chore: bump to nightly-2023-07-01 (#5409)

Open in Gitpod

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -23,8 +23,8 @@ variable {α : Type _}
 
 theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
-  simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSuccEmb,
-    castSuccEmb_zero]
+  simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
+    castSucc_zero]
 #align lift_fun_vec_cons liftFun_vecCons
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
chore: rename Fin.castSucc to Fin.castSuccEmb (#5729)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -23,8 +23,8 @@ variable {α : Type _}
 
 theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
-  simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
-    castSucc_zero]
+  simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSuccEmb,
+    castSuccEmb_zero]
 #align lift_fun_vec_cons liftFun_vecCons
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
chore: fix lift_fun -> liftFun in lemma names (#4873)
Diff
@@ -21,22 +21,22 @@ open Set Fin Matrix Function
 
 variable {α : Type _}
 
-theorem lift_fun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
+theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
     ((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
-  simp only [lift_fun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
+  simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
     castSucc_zero]
-#align lift_fun_vec_cons lift_fun_vecCons
+#align lift_fun_vec_cons liftFun_vecCons
 
 variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
 
 @[simp]
 theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono f :=
-  lift_fun_vecCons (· < ·)
+  liftFun_vecCons (· < ·)
 #align strict_mono_vec_cons strictMono_vecCons
 
 @[simp]
 theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f := by
-  simpa only [monotone_iff_forall_lt] using @lift_fun_vecCons α n (· ≤ ·) _ f a
+  simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
 #align monotone_vec_cons monotone_vecCons
 
 --Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
@@ -51,7 +51,7 @@ theorem strictMono_vecEmpty : StrictMono (vecCons a vecEmpty)
 
 @[simp]
 theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti f :=
-  lift_fun_vecCons (· > ·)
+  liftFun_vecCons (· > ·)
 #align strict_anti_vec_cons strictAnti_vecCons
 
 @[simp]
feat: port Data.Fin.Tuple.Monotone (#1827)

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 2 + 128

129 files ported (98.5%)
60347 lines ported (99.8%)
Show graph

The unported dependencies are